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PROJECT SUMMARY
NASA SBIR PHASE II FINAL REPORT

PROJECT NO.: N/A CONTRACT NO.: NAS 8-40165 NASA CENTER: MSFC

PROJECT TITLE: New Instrumentation Technologies For Testing The Bonding of Sensors To Solid
Materials

COMPANY: Analysis and Measurement Services Corporation

ADDRESS: AMS 9111 Cross Park Drive, Knoxville, Tennessee 37923

Phone: (423) 691-1756 / Fax: (423) 691-9344 / E-Mail: info@ams-corp.com

SUMMARY: 1. THE INNOVATION; 2. RESEARCH OBJECTIVES; 3, RESEARCH RESULTS; 4. WERE RESEARCH OBJECTIVES MET? 5. IS PHASE III JUSTIFIED?

6. POTENTIAL NASA PHASE III APPUCATIONS', 7, COMMERCIAL APPLICATIONS POTENTIAL.

New techniques were successfully developed and validated for testing the bonding of thermocouples,

RTDs, and strain gages to solid materials. Testing the bonding of thermocouples has applications in the

SRM nozzle development programs, and testing the bonding of RTDs and strain gages has applications

in the space shuttle program.

In development of improved materials for SRM nozzle liners, thermocouples are embedded in the material

for transient temperature measurements. These measurements are made to validate the theoretical

models that have been developed to describe the behavior of the material under firing conditions involving

very high temperatures. If thermocouples are not in good contact with the material, transient temperature

measurements will have large lags and would not be useful for model validation. Up to now, a reliable
method was not available for passive testing of embedded thermocouple installation. The technology that

was developed here will help verify the degree of bonding between an embedded thermocouple and the

host material and thereby minimize model validation errors.

In space shuttle main engines (SSMEs), surface-mounted RTDs are used on fuel and oxidizer lines as a

means of detecting leaking values. Under the harsh operating conditions of an engine, the RTDs may

become loose or detached from the piping and preclude timely leak detection. The technology that was

developed in this project will help verify the bonding of RTDs and enable NASA to identify leaking values

in space shuttles in a timely manner.

The existing Loop Current Step Response method was used to develop most of the technologies
described in this report. This method is based on applying an electrical current to the sensor through

its normal leads. The current creates Joule heating in the sensor, the amount of which depends on the

sensor's ability to dissipate the heat. The transient output of the sensor during the heating or cooling

(after the current is cut off) is recorded and analyzed to determine the degree of bonding between the

sensor and the material on which it is installed. In addition, the LCSR method was proven to be useful

in thermocouple circuit diagnostics. The method successfully detected secondary junctions and

reverse-connected thermocouples during field measurements which helped NASA and its contractor avoid
difficulties that would have been encountered if these problems were not identified.

In addition to thermocouples and RTDs, the LCSR method can be used to test the installation of strain

gages. Testing the installation of strain gages has many aerospace applications, especially in testing the
performance of space shuttle main engines. In fact, strain gages, as installed on test bed SSMEs, were

successfully tested during field measurements performed in this project.

In addition to meeting NASA's needs, the technologies that were developed in this project have

applications not only in other aerospace facilities, but also in all industrial and scientific processes that

require transient temperature and strain measurements in solid materials.
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1. INTRODUCTION

The accuracy and reliability of transient temperature, pressure, and other measurements

depend on the dynamic response of sensors that are used to make the measurements.

The dynamic response of a sensor is comprised of an internal and an external

component. The internal component depends on the sensor materials and dimensions and the

external component depends on the contact between the sensor and the medium in which the

sensor is used. If the contact is poor, then the sensor may take a long time to indicate a change

in the parameter being measured. On the other hand, if the contact between the sensor and the

host medium is good, the sensor output will follow the process closely.

For sensors that are attached to a solid surface or embedded in a solid material, the

dynamic response depends strongly on the bonding between the sensor and the material.

Therefore, it is important for the sensor to be in intimate contact with the material. This report

presents new technology for verifying the bonding of sensors to solid materials by in-situ

measurement of dynamic response of the sensor in the solid material. This technology has

applications in most processes which involve measurement or monitoring of transient conditions.

In this project, the technology was implemented in the following applications for NASA:

.

.

,

Testing the attachment of thermocouples that are used in testing
the performance of composite materials for SRM nozzles.

Testing of thermocouples embedded in solid materials used for the
lining of blast tubes in solid rocket boosters in space shuttles and
other aerospace vehicles.

Verifying the bonding of skin-mount RTDs that are used on the fuel
and oxidizer lines of space shuttles for detecting leaks from the
valves in the lines.

-1-



. Determining the attachment of strain gages that are used for load
and vibration measurements in SSMEs.

The LCSR method was used in developing the new technology described in this report.

This method was originally developed in the mid 1970s for in-situ response time testing of RTDs

and thermocouples in nuclear power plantsf _ Subsequently, the method was adapted in the mid

1980s to response time testing of thermocouples in jet engine test facilities for the U.S. Air

Force/z3j The advantage of the LCSR method is that it can be used for remote measurement

of response time of sensors as installed in operating processes. The results of the LCSR test

provides dynamic information not only about the sensor but also about the sensor-to-process

coupling. The latter capability of the LCSR method is used to characterize the bonding of

installed sensors to their host material.

The LCSR test is based on internal heating of the sensor by applying an electrical current

to the sensor's extension leads. This creates Joule heating in the sensor. The amount of

heating depends on the applied current ( ] ) and the sensor resistance ( R ). Joule heating is

also referred to as [2R heating.

For LCSR testing of RTDs and strain gages, a DC current is used in a Wheatstone bridge

arrangement to heat the sensor a few degrees above the ambient temperature. The bridge

current is suddenly increased from about 1 or 2 mA to about 20 to 40 mA (for thin-film RTDs and

strain gages; and 40 to 80 mA for regular industrial RTDs) while the bridge output is recorded

for a few seconds to a few minutes depending on the sensor and the conditions in which the

sensor is tested. The bridge output is an exponential transient that can be analyzed to yield the

dynamic response of the sensor under the actual installation and operating conditions tested.

The response time value obtained in this manner is meaningful only for RTDs that are tested in
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liquidsand gaseousprocessmedia. Inthesecases,the responsetimethat is obtainedfromthe

LCSRtest is the sameasthe responsetimethat would be obtainedfor the RTDif the process

temperatureexperienceda step change.

For RTDsthat are installedon solid surfaces,the LCSRtest is not usuallyintendedfor

response time measurementsper se. Rather,the test is performedto identify a dynamic

responsethat is indicativeof how well the RTDis attachedor bondedto the solid material. As

such, the resultsof LCSRtestsof RTDson solid surfacesare oftennot referredto as response

time. Rather,they are referredto as installation index. Similarly,for strain gages that are

installedon solid surfaces,the LCSRtest is usedto providea quantitativeestimateof the strain

gagebonding as opposedto yieldinga responsetimevalue.

TheLCSRprocedurefortestingthedynamicresponseof thermocouplesismuchdifferent

than RTDs and strain gages and involves different equipment and procedures. For

thermocouples,the LCSRtest is performedusinganAC currentto heatthethermocouple. For

smalldiameterthermocouples,50 to 200 mA of ACcurrentis usuallyadequate,while for large

diameterthermocouplesup to 3ampsmaybenecessary.Higherheatingcurrentsarenecessary

for thermocouples because the resistance of thermocouples is distributed along the

thermocouplewireaswellasthesensingjunction,whiletheresistanceof RTDsand straingages

areconcentratedmainlyinthe sensingelement. Consequently,a smallcurrentcanheatan RTD

or astraingagesufficientlyto producea usefulLCSRtest transient,whilethermocouplesrequire

a much largerheatingcurrentfor adequateJouleheatingand a successfulLCSRtest.

For LCSRtesting, the thermocoupleis first heatedfor a few seconds and its output is

monitoredafterthe heatingcurrentis switchedoff. Thisprovidesan exponentialtransientthat
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resultsfrom coolingof thethermocouplejunction. Thecoolingrateor the rateof the exponential

decaydependsonhowfast thethermocouplejunctionreturnsto the ambienttemperature.Ifthe

thermocouplejunction is ingoodthermalcontactwith itssurroundings,thenit willcool fasterand

if it is in poor contact, it will cool slower. Hence,the LCSRmethodcan revealthe quality of

bondingbetweenathermocoupleanda solidmaterialandshowif agroupof thermocouplesthat

areinstalledon a solid surfaceor embeddedin a solid materialhavethe samebondingquality.

As in the case of RTDsand strain gages, for the applicationsdiscussed in this report, the

dynamicresponseof thermocouplesin solid materialsis expressedin terms of an installation

indexas opposedto a responsetimevalueor a time constant.

The exponentialtransientsthat resultfrom LCSRtestingof RTDsor thermocouplesare

analyzed by fitting the LCSRdata to a model. This model is used to transformthe internal

heating informationto obtain the dynamicresponseof the sensorto an externaltemperature

change. The LCSRmodelwas developedin the mid 1970sbased on a detailed heat transfer

analysisof typicalthermocouplesand RTDs.A paper is attachedinAppendixA that describes

the fundamentalsof temperaturesensorresponsetimetesting includinga detaileddiscussion

of how the LCSRmodelswerederivedfrom a lumped-parameteranalysisof a sensor.
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2. PROJECT OBJECTIVES

The goal of this project was to adapt the existing LCSR method for testing the bonding

of sensors to solid material not only for aerospace applications and to meet NASA's needs, but

also for other industrial and scientific applications which involve transient temperature and strain

measurements on solid surfaces or inside solid materials.

Although the technology developed in this project has applications beyond NASA, this

report is concentrated on the NASA applications that are described below.

2.1 Testing of Composite Materials

A number of research projects have been underway in the aerospace industry to improve

the understanding of the thermostructural behavior of composite materials used in SRM nozzles,

turbine engines, hot structures, etc. Fundamental to this effort is accurate and timely temperature

measurements made with thermocouples attached to a solid surface or embedded in a solid

material.

In order to interpret the internal thermal data obtained under transient test conditions, one

must have an estimate of the dynamic response of thermocouples to verify that the

thermocouples are in good contact with the material under study. Since the dynamic response

of a thermocouple in a solid material is strongly dependent on its installation (i.e., bonding) as

well as the properties of the sensor and the material, an in-situ test technique was developed in

this project to meet the following objectives:
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o

°

Determine if, in spite of the hostile conditions imposed during firing
tests, the thermocouple remains properly embedded in the
material.

Determine if redundant thermocouples used in a material have
comparable installation and their bonding to the material is
consistent.

2.2 Validation of Theoretical Models

Analytical modeling techniques are routinely used to predict the thermostructural behavior

of carbon-carbon, carbon-phenolic, and other composite materials used in aerospace

applications. Hot firing tests with instrumented structures are used to validate the analytical

models. These tests involve short run times, high heat fluxes, and consequently, rapid

temperature transients. Temperature measurements made to date have often shown significant

time lags with respect to the model predictions and unacceptable discrepancies between

redundant temperature sensors. If it can be verified that thermocouples are in good contact with

the solid material, and an estimate of their relative dynamic responses can be made, then the

measured temperature data can be interpreted more accurately in validating the analytical

models.

Up to now, a reliable method has not been available to evaluate the quality of a

thermocouple installation in a solid material, or provide an estimate for the dynamic response of

the thermocouple in the material. Consequently, it has not been possible to determine how well

the output of a bonded or embedded thermocouple actually represents the temperature of the

surrounding material under transient conditions. Neither was it possible to determine the extent

to which the transient outputs of separate thermocouples are different due to actual material

temperature differences as opposed to differences in the integrity of the installations. As a result,

theoretical models that have been developed for the study of thermophysical properties of
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compositescould not be easilyvalidatedwithexperimentaltemperaturedata. Modelvalidation

involvescomparing modelpredictionswith actual temperaturedistributionsin the composite

materialsothatthe modelscanbe tunedundercontrolledconditionsand laterusedasageneral

tool for evaluatingthetemperatureresponseof othercomposites,andfor the designof improved

composites.

2.3 Testing the Thermal Performance of Blast Tube Liners

The inside wall of blast tubes in reusable SRMs are covered with a layer of material that

must withstand the high temperatures experienced after the SRM is fired. As a part of this

project, Type K thermocouples as installed in the blast tube liner materials for SRMs were tested

in the laboratory. The purpose of these tests was to verify the operability and installation integrity

of thermocouples before and after curing in SRM liner material.

2.4 Testing the Bonding of Surface Mounted RTDs and Strain Gages

In addition to thermocouples, the objective of this project was to develop an in-situ

method that can be used for testing the attachment of RTDs and strain gages to solid materials.

A method to verify the attachment of strain gages has applications in testing of SSMEs and a

method to test the attachment of RTDs has applications in identifying leaking valves on the fuel

lines of the space shuttle. The laboratory and field measurements described later in this report

showed that the LCSR method is very successful in meeting these needs.

2.5 Cooperation with NASA and NASA Contractors

Most of the thermocouple work performed in this project involved samples provided by

NASA contractors; Hercules Aerospace Company and Thiokol Corporation, and almost all the

RTD and strain gage work was performed in cooperation with NASA at MSFC.
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Duringthis project,AMSwasableto contributeto the SolidPropulsionIntegrityProgram

(SPIP)and the space shuttleprogramin the followingareas:

°

°

°

Laboratory tested thermocouples in composite samples made by

NASA contractors to be fired at SRI and MSFC. These tests

verified the consistency of thermocouple installations and helped

identify the thermocouples that were improperly installed.

Field tested thermocouples prior to firing tests and identified

problems such as secondary junctions in thermocouples,

reverse-connected thermocouples, and thermocouples with

inconsistent installations.

Laboratory and field tested skin-mount RTDs used for detection of

leaking valves in SSME fuel lines. These tests were important to

verify that the RTDs are securely attached to the lines as opposed

to being loose, detached, or floating in the air.

A report written by the Boeing Aerospace Company and provided to NASA through

Hercules has acknowledged the AMS contributions in support of NASA and its contractors, c4_

The conclusions of the Boeing report are reproduced verbatim in Table 2.1. The Boeing

report also listed the thermocouple problems that have been or may be experienced in the SRM

nozzle development program. The list is reproduced verbatim in Table 2.2.

2.6 Development of LCSR Test Equipment for NASA/MSFC

A set of LCSR hardware, software, and procedures was developed and delivered to NASA

at the conclusion of this Phase II project in late January 1996. This equipment will provide NASA

with independent in-house capability to perform LCSR measurements to characterize the

installation quality of thermocouples in solid material. The equipment was successfully

demonstrated to NASA/MSFC personnel who visited AMS in January 1996 for factory acceptance

of the equipment prior to shipment.
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TABLE 2.1

1993 ANALOG TESTING CONCLUSIONS

(Copied from Boeing Report - Reference 4, Page 53)

,

,

.

,

°

.

°

°

o

The Delta-M, sheathed thermocouple configuration provides higher temperature capability
and a more consistent/repeatable response than the unsheathed configuration.

Air gaps around the thermocouple or between the plug and installation hole are detrimental
to the response of the installation and should be eliminated or at least minimized.

Filler around the thermocouples enhances their response by providing more uniform
thermal contact between the thermocouple and the Carbon-Phenolic. However, there is
very little added benefit in using Graphite powder over the Boron Nitride slurry, in terms of
thermocouple response, and the Boron Nitride is easier to control during the installation
process.

Precision machining of the plug and installation hole is required to insure good thermal
contact at the plug to hole interface.

The in-depth plug configuration is the best compromise of the three installations. The face
thermocouple configuration almost inherently results in an air gap around the
thermocouple, between the plug and installation hole, and the through plug configuration

presents structural concerns due to the plug extending all the way through the flame
surface which could initiate and/or increase erosion around the thermal probe installation.

The Delta-M manufacturing process must be improved to insure a thermocouple product
which has adequate isolation to ground, a more robust transition joint and sheath integrity
which prevents moisture absorption. Due to moisture absorption, many of the 1993
Delta-M thermocouples had to be baked at 145 °F for 3 hours. Simply baking out
absorbed moisture was not an acceptable solution. Delta-M improved their processing and
materials based on feedback from SPIP testing and the 1994 testing had fewer problems.
Only the transition joint remained sensitive to handling damage.

The Loop Current Step Response system, while not able to provide an absolute measure
of the time constant of the installation, is a valuable tool in defining the integrity of the
installation in terms of secondary junctions within the thermocouple assembly, reversed
leadwires, and nominal response, i.e., no large air gaps around the thermocouple.

We do not have any kind of an accuracy statement for the thermal probe installation due
to lack of a reference/standard in the 1993 analog testing.

The MSFC Plasma Torch test facility is not a controlled enough test with such boundary
conditions as well defined torch impact points to support code validation quality work. It
is quite good for concept screening, however, several of these lessons learned items have
subsequently been addressed/resolved in the 1994 testing.

-9-



u_
O.

(.9::3
zO
_o
0 o
n"_
i..l.i rr

I..I.I

X X

(.'3
C)
_J

X X X X X

Z
<W

on-
--.. U.l n

o

_d

_.- <__ _ _ x x

iii 0
,-.I _

:3
OO_[...,.
0"6
OO
_m
-'E
,,,£

{3.
0
0
v

0_
an

U.I

uJ CO
rr

X X X X X

X

X

X

X X X X

X X X X

.E_

0
n

X X X X

w_--J I.LI

,,<,

_o _ _ _ _ _z _z

::3
0
I.L
I.,L

13

13
W
I--
rr
0

UII
_r

ii
0

rr
,<

II

X

-10-



3. HISTORICAL BACKGROUND

3.1 SRM Problems

The performance of SRMs depends on the quality of the composite materials used for the

lining of the SRM nozzles. The material must withstand high temperatures (up to about 4000°F)

and tolerate the hostile environments that exist during the firing of SRMs.

Due to a significant number of SRM anomalies and failures experienced by the

Department of Defense (DoD) and NASA in the early 1980's, a committee headed by Dr. J. W.

Littles of MSFC was formed in 1984 to identify the causes and provide resolutions to the

persistent SRM problems. The Littles Committee was comprised of specialists from NASA, DoD,

and the aerospace industry, and its mission was to assess the state-of-the-art of SRM nozzle

design, manufacturing, and acceptance testing.

The Littles Committee concluded that a comprehensive R&D effort should be pursued to

understand the behavior of the composite materials under SRM firing conditions and use the

information to produce better composites and improve the performance of SRMs. In response,

NASA initiated a multidisciplinary R&D program known as the Solid Propulsion Integrity Program

(SPIP) to address all aspects of SRM nozzle design and performance. An important part of this

program is the development and validation of analytical models to predict the behavior of such

composites as carbon-carbon and carbon-phenolic materials used in the construction of SRM

nozzles. The models are developed theoretically from the laws of heat transfer and validated

under simulated or actual SRM firing conditions. The model validation task requires a variety of

instrumentation to determine temperature, pressure, strain, stress, heat flux, and other parameters
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that candescribethe internaland surfaceresponsesof the compositeswhen exposedto high

temperatures.

The importanceof good instrumentationand accurate measurementtechniques was

recognizedby the LittlesCommitteewhenthe SRMnozzle integrityprogramwas established.

Thus,the Littlesplanrecommendedthat R&Deffortsbecarriedout to provideimprovedsensors

and new instrumentationtechniquesto test the thermaland structuralperformanceof SRMs.

3.2 Space Shuttle Needs

The major components of a space shuttle include the main engines, the solid rocket

boosters, and the external fuel tank. Each shuttle has three main engines, two solid rocket

boosters, and one external tank. These components are shown in Figure 3.1 and described

individually in Tables 3.1 through 3.3.

The LCSR test was found to have two applications in the space shuttle program. These

applications are described below.

Space shuttles use skin-mounted RTDs on their main engine fuel and oxidizer lines

downstream of isolation valves to monitor for fuel (H2) and oxidizer (LOX) leaks through the

valves. Normally, the line should be at the ambient temperature when the isolation valves are

closed. If there is any leak, the lines will become cold and the RTDs will reveal the leak,

provided, of course, that the RTDs are properly bonded to the lines.
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Figure 3.1 A Simplified Schematic of a Space Shuttle
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TABLE 3.1

DESCRIPTION OF SPACE SHUTTLE MAIN ENGINE

The Space Shuttle main engine is an advanced liquid-fueled rocket engine. Its main
features are variable thrust, high performance, reusability, redundancy, and a fully
integrated controller.

Three identical main engines are mounted on the orbiter aft fuselage in a triangular
pattern. The engines are spaced so that they are moveable during flight and, in
conjunction with the two solid rocket boosters, are used to steer the Shuttle during
flights as well as provide thrust for launch.

Fuel for the engines, liquid hydrogen and liquid oxygen, is contained in the external
tank, the largest element of the Shuttle.

The main engines use a staged combustion cycle in which all propellants entering the
engines are used to produce thrust. In the staged combustion cycle, propellants are
burned partially at high pressure and relatively low temperature, and then burned
completely at high temperature and high pressure in the main combustion chamber.
The rapid mixing of the propellants under these conditions is so complete that a
combustion efficiency of about 99 percent is attainable.

The Shuttle main engine uses a built-in electronic digital controller. The controller will
accept commands from the orbiter for engine start, shutdown and change in throttle
setting, and also will monitor engine operation. In the event of a failure, the controller
takes action automatically to correct the problem or shutdown the engine safely.
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TABLE 3.2

DESCRIPTION OF SOLID ROCKET BOOSTERS

Prior to launch, the entire weight of the Space Shuttle is supported on the launch pad
by two solid rocket boosters. Each booster is attached to the pad by four large bolts.

The heart of each booster is the motor. It is made of four factory prepared segments
filled with propellant at the manufacturer's facility and assembled at the launch site. The
segmented design permits ease of fabrication, transportation and handling.

The exhaust nozzle in the aft segment of each motor, in conjunction with the orbiter
main engines, steers the Shuttle during flight. It can be moved up to eight degrees by
the booster thrust vector control system which is controlled by the orbiter guidance and
control computer.

At burnout, the two solid rocket boosters are separated from the external tank by
pyrotechnic (explosive) devices and moved away from the Shuttle vehicle by eight
separation motors - four housed in the forward compartment and four mounted on the
aft skirt. The separation motors are fired by a command from the orbiter. The recovery
system, in the forward section of the booster, consists of parachutes and a homing
device. Following separation - at about 5.8 kilometers (19,000 feet) - the booster is
slowed by a drogue parachute and finally by three main parachutes to impact water at
a speed of about 25 meters/second (85 feet/sec), aft end first. By entering the water
this way, the air in the empty booster is trapped and compressed, causing the booster
to float with the forward end out of the water. After divers insert a nozzle closure and

force the water from the booster using air pumps, the booster is towed to shore.

After recovery, the booster is disassembled and refurbished. The motor segments are
shipped to the manufacturer for reload for another Shuttle flight. The other systems are
refurbished either at the launch site or at the respective manufactures' locations.

The two solid rocket boosters are each 149.1 feet (45.4 meters) high and 12.2 feet (3.7
meters) in diameter. Each weighs 1,300,000 pounds (589,670 kilograms). Their solid
propellant consists of a mixture of aluminum powder, aluminum perchlorate powder,
and a dash of iron oxide catalyst, held together with a polymer binder. They produce
about 3.1 million pounds (13.8 million newtons) thrust each for the first few seconds
after ignition, before gradually declining for the remainder of a two-minute burn.
Together with the three main engines on the orbiter, this provides a total thrust of over
7.3 million pounds (32.5 million newtons) at liftoff.
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TABLE 3.3

DESCRIPTION OF SPACE SHUTTLE EXTERNAL TANK

The Space Shuttle external tank (ET) is the largest single element and the only major
non-reusable component of the Shuttle system. The ET is 154 feet (47 meters) long and
27.6 feet (8.4 meters) in diameter and carries more than 528,600 gallons (2 million
liters) of cryogenic propellants that are fed to the orbiter's three main engines during
powered flight.

The ET is the structural backbone of the Shuttle system and absorbs the thrust loads

generated by the orbiter's three main engines and two solid rocket boosters.

The ET is actually three components in one: a liquid oxygen tank located in the forward
position; a liquid hydrogen tank located aft; and an intertank assembly that connects
the two propellant tanks and houses the forward solid rocket booster attachment
points. The ET weighs approximately 1,655,600 pounds (751,000 kilograms) when filled
with propellants and 66,000 ponds (29,900 kilograms) when empty.

The ET is covered with a multilayered thermal protective coating approximately 1 inch
(2.5 centimeters) thick. The insulation allows the tank to withstand the extreme internal
and external temperatures generated during prelaunch, launch, and flight. The exact
materials, thicknesses, and methods of application vary at different locations on the
tank.

The tank's design has been modified to reduce its weight and thus increase the
shuttle's payload capability. The first lightweight ET flew on the sixth shuttle mission in
April 1983, and weighed over 10,000 pounds (4,500 kilograms) less than the ET used
on the first shuttle flight.

At launch, propellants are pressure fed at a combined rate of 1,035 gallons (3,900
liters) per second through 17-inch (43.2 centimeter) diameter feedlines to the orbiter's
three main engines. Eight and one-half minutes into flight, when the orbiter and ET
have reached an altitude of about 71 miles (114 kilometers), the main engines are cut
off and the tank is jettisoned. Residual gaseous oxygen is used to initiate a slow
tumble away from the orbiter, prevent the El" from skipping off the atmosphere, and
assist in its break-up and descent into a remote ocean area.

The external fuel tank falls toward Earth following its jettisoning from the Space Shuttle

during the first ten minutes of the flight.
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Surface-mounted RTDs in space shuttles can become loose or detached from the fuel or

oxidizer lines due to vibration and other harsh conditions during a shuttle flight. Thus, it is

important to test the bonding of the RTDs on a periodic basis, especially after a shuttle flight or

before a next flight to ensure that the RTDs are still attached. One of the objectives of this

project, which has been successfully met, was to prove that the LCSR method is a reliable means

for testing the skin-mount RTDs in the space shuttle's main engines.
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4. DESCRIPTION OF LCSR TEST FOR THERMOCOUPLES

4.1 LCSR Test Principle

LCSR testing of thermocouples is based on internal heating of the thermocouple by

applying an electrical current to its extension leads. The current is applied for a few seconds and

then turned off. This heats the thermocouple junction several degrees above the ambient

temperature. When the current is stopped, the thermocouple output is monitored as the junction

cools to the ambient temperature. The rate of this cooling depends on the response time of the

thermocouple and how well the thermocouple is attached to the material whose temperature is

being monitored.

Extensive work with thermocouples in liquids and gases has shown that an analysis of

the thermocouple cooling transient can provide the actual response time of the thermocouple

under the installation and process conditions tested. (1'2'3) Details are provided in Appendix A.

Figure 4.1 shows a simplified schematic of the LCSR test equipment for thermocouples.

An AC power supply is used to heat the thermocouple with a current about 50 mA to 1 amp

depending on the thermocouple wire and sheath (if any) diameter. The heating current is applied

for 2 to 10 seconds depending on the heat transfer conditions in which the thermocouple is

tested. Following this heating period, the AC current is switched off and the thermocouple output

is recorded until it reaches steady-state indicating that the thermocouple junction has returned

to the ambient temperature.

Figure 4.2 illustrates the principle of the LCSR test and Figure 4.3 shows an actual LCSR

transient for a thermocouple that was tested in the laboratory. Usually, the LCSR test is repeated
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5 to 20 times on each thermocouple and the resulting LCSR transients are averaged to provide

a smooth LCSR transient to facilitate the analysis.

4.2 LCSR Data Analysis

The analysis of LCSR data involves an exponential peeling process to identify the poles

of the thermocouple transfer function that are then used to give the in-situ response time of the

thermocouple.

In this project, the interest in testing thermocouples was not as much in determining a

response time as it was in verifying the thermocouple installation. As such, most of the analysis

performed here involved comparing raw data plots of LCSR tests. Figure 4.4 shows LCSR data

for two identical thermocouples as bonded to a solid material. The thermocouples do not exhibit

comparable LCSR transients indicating that the bonding of the two thermocouples are different.

To quantify the difference, the LCSR data can be analyzed to give an estimate of the dynamic

response of the thermocouple. If a thermocouple is used in a liquid or gas, then it is customary

and appropriate to express the LCSR results in terms of a single response time value or a time

constant. However, when a thermocouple is installed on a solid surface or embedded in a solid

material, it is appropriate to express the results of the LCSR test not in terms of a time constant

or response time, but in terms of an installation index. In this report, the words installation index,

response time, and LCSR results are used interchangeably to express the degree of bonding

between a sensor and a solid material.

4.3 LCSR Test Equipment Supplied to NASA

The contract with NASA for the work reported herein called for a thermocouple LCSR test

system to be constructed by AMS during the project and delivered to NASA at the conclusion
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of the project. Figure 4.5 shows a photograph of this equipment. The equipment was shipped

to NASA/MSFC at the end of January 1996.

The equipment consists of two units; a LCSR signal generator, and a LCSR signal

analyzer. These units are described below.

,

,

The LCSR signal generator unit contains a variac that can be

adjusted to provide the necessary voltages across the

thermocouple for the LCSR test. The resulting current that flows

through the thermocouple is displayed on an analog ampmeter on

the front panel of the LCSR signal generator unit. The unit also

contains timing circuitry to adjust the thermocouple heating time,

and amplifiers and filters for LCSR signal conditioning. The

amplifier gains and the filter settings are accessible on the front

panel of the equipment.

The LCSR signal analyzer unit consists of a data acquisition

computer with a 12-bit analog to digital convertor (A/D) to sample

and analyze the LCSR data.

A user-friendly data acquisition and data analysis software provides

a menu with eight options to allow automatic LCSR data sampling

and storage, data averaging, data display, etc. The data

acquisition software provides the user with a default set of

sampling parameters. The user can override the default

parameters from the keyboard as necessary to test thermocouples

with various dynamic characteristics. For example, for slow

thermocouples (e.g., thermocouple with response time greater than

100 seconds), LCSR data is sampled at a low rate (e.g. 0.05 to 0.5

second intervals), and for a long time (e.g., 5 to 10 minutes).

Conversely, for fast thermocouples, the LCSR data is sampled at

a high frequency (0.01 to 0.03 second intervals) and for a short

period of time. Figure 4.6 shows the computer screen with the

LCSR menu.

Appendix B contains a copy of the operations manual for the equipment. The manual

describes the operation of the equipment including a detailed LCSR test procedure.
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Figure4.5 Photographof ThermocoupleLCSRTestSystemDeliveredto NASA
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5. DESCRIPTION OF LCSR TEST FOR RTDs AND STRAIN GAGES

The LCSR test of RTDs and strain gages involves a Wheatstone bridge with current

switching capability and a variable power supply as shown in Figure 5.1 The sensor is

connected to one arm of the bridge and the bridge is balanced using a decade box. As shown

in Figure 5.1, when the switch is open, the bridge voltage is dropped across a large resistor (R,)

and a small current (1 to 2 mA) flows through the sensor. When the switch is closed, Rs is

bypassed and a larger voltage is then applied to the bridge leading to a high current (40 to 80

mA) through the RTD or strain gage in the bridge. The high current causes internal heating in

the sensor and increases its temperature a few degrees (about 5 to 15°C depending on the

applied current and the sensor response time) above the ambient temperature. This temperature

rise causes the resistance of the sensor to increase with time and results in an exponential

transient at the output of the bridge that has a final amplitude of about 0.05 to 0.15 volts. An

amplifier is used to increase this voltage to near 10 volts before it is sampled by a computer for

analysis. The fixed resistors in the bridge are of the type which do not heat up when the current

is increased. As such, the output of the bridge represents predominantly the heating of the

sensing element in the RTD or strain gage.

Figure 5.2 illustrates the principle of the LCSR test and Figure 5.3 shows LCSR transients

for an RTD and a strain gage that were tested in the laboratory.

The amount of high current that is used for LCSR testing of an RTD or strain gage

depends on the response time of the sensor under the conditions that the sensor is tested. If

the sensor is slow, then 10 to 20 mA is sufficient. This is because a slow sensor dissipates the

heat slowly and leads to a large LCSR signal without a need for a large current or a large

- 27 -



AMS-DWG WBR003X

R

\
\

\,

Fixed High Voltage
Resistors

f-

///"

/

Variable

Resistor

R
RRTD or Strain Gage

Variable DC Power

Supply (0-60 VDC)
R S

Figure 5.1 Wheatstone Bridge for LCSR Testing of RTDs and Strain Gages

- 28 -



AMS-DWC RSPO01J

c
(1.)

23

ro
o

O

LIJ

c)
:D

O

(1)

"o

m

1

Time

Figure 5.2 Illustration of the Principle of the LCSR Test

- 29 -



"C
O
N

O
Z

¢0
C
O
D.
(O
O

¢n
O
_1

0

0

RTD

f
J

/
LCSR High Current = 17 mA CSS232A-01A

10 20 30

Time (sec)

Strain Gage LCSR High Current = 30 mA CSS232A-02A
T

A

"O

.N
m

O
Z

¢)

c
O
Q.
w
o

t_
U}
O
.J

0

0.0

j_ Zf

/
/

_T " --T .... T =

0.3 0.5 0.8

Time (sec)

1.0

Figure 5,3 LCSR Transients for a RTD and a Strain Gage
Tested in the Laboratory

- 30 -



amplifier gain. On the other hand, if the sensor is fast, such as when the sensor is installed in

a flowing fluid, then a larger current (40 to 80 mA) is needed to overcome the ability of the sensor

to dissipate the heat. In this case, the larger current helps to provide a useful LCSR signal

without having to use a large amplifier gain. It is generally better to use a higher heating current

than a larger amplifier gain to obtain a LCSR transient. Large amplifier gains will also amplify any

noise on the LCSR signal and must therefore be avoided when there is no restriction on the level

of heating current that can be used. Of course, if the heating current must be limited and a high

amplifier gain must therefore be used, then a "Low-Pass" filter may be needed to remove any

extraneous noise.

Figure 5.4 shows a photograph of the LCSR test equipment that AMS developed years

ago and has been using to make response time measurements on RTDs in nuclear power plants

and other processes. Referred to as the AMS Model ERT-1, this equipment was used throughout

this project to perform LCSR tests on RTDs and strain gages of interest to NASA.

In addition to the ERT-1, AMS has a microprocessor-based data acquisition and data

analysis system for LCSR testing of RTDs in nuclear power plants (Figure 5.5). This analyzer is

connected to the ERT-1 to perform the LCSR test, analyze the data, calculate the sensor

response time, and display the results on a digital indicator on the front panel of the equipment.

This analyzer is referred to as the AMS model ELC-1.

- 31 -



Figure 5.4 Photographof LCSRSignalGenerator,AMS Mode ERT-1
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Figure5.5 Photographof LCSRSignalAnalyzer,AMSModelELC-1
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6. RESULTS OF LABORATORY TESTS OF THERMOCOUPLES

Laboratory tests using the plunge and LCSR methods were performed on representative

thermocouples as installed in composite materials to provide baseline data on the dynamic

behavior of thermocouples in solids. Furthermore, the laboratory tests were intended to help in

interpretating field test results, establishing optimum heating times and heating currents for LCSR

testing, quantifying the effect of air gaps on the results of LCSR tests, and examining how thermal

compounds used in mounting of thermocouples in solids can help minimize the effect of air gaps

on dynamic response of thermocouples. The key results of this work are presented in this

chapter.

6.1 Plunge Test Results

A plunge test involves exposing the thermocouple to a sudden change in ambient

temperature and recording the thermocouple output to identify its time constant. The time

constant is defined as the time that is required for the thermocouple output to reach 63.2 percent

of its final steady-state value following a step change in ambient temperature.

Plunge tests were performed in this project to identify the correlation between the results

when a thermocouple is plunge tested in air, then installed in a composite block and plunge

tested while in the block, and finally, LCSR tested in the block. The results for a sample of five

thermocouples are presented here. These thermocouples are identified in Table 6.1 by tag

numbers that were assigned to them in this project to track the results. Three of the

thermocouples are general-purpose off-the-shelf sensors purchased from OMEGA Engineering,

and the other three are small diameter thermocouples made by Delta M Corporation. Delta M
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TABLE 6.1

Representative Thermocouples Used for Laboratory Tests

Tag
Number

Thermocouple
Manufacturer

Sheath Outside

Diameter (inches)
Loop Resistance

(ohms)

Insulation

Resistance (IR)
(Mega-ohms)

N28 OMEGA 0.02 49.320 0.10

N29 OMEGA 0.02 47.960 10,000.00

N30 OMEGA 0.02 48.470 10,000.00

N31 DeltaM 0.01 157.043 10,000.00

N32 DeltaM 0.01 156.906 10,000.00

N33 DeltaM 0.01 154.516 10,000.00
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has supplied a significant number of specially-made thermocouples to NASA and others for the

SPIP program. Appendix C includes a description of the Delta M manufacturing process for

thermocouples that are used for special applications.

The plunge tests were performed on thermocouples as installed in a composite material.

The composite material, a carbon-phenolic (C-P) sample identified as FM5055, was first machined

into a cylindrical sample and thermocouples were fit into holes in the block at two different

depths as shown in Figure 6.1. Using a hydraulic plunger, the composite block was suddenly

moved into a furnace at 300°F. Figure 6.2 shows a photograph of the furnace and the

composite block situated in a position to be moved into the furnace by the hydraulic plunger.

The plunge test results are presented in Table 6.2 in three columns. The first column

shows response times of the thermocouples before they were installed inside the composite

block. Referred to as the "Bare" time constant, these results were obtained by securing each

thermocouple on the hydraulic plunger in air and moving it quickly into the furnace. The second

and third columns provide time constant results after the thermocouples were installed in the

composite material and plunged into the furnace along with the composite material. The second

column gives the time constants of the five thermocouples at a depth of 1/16" from the heated

surface, and the other column gives the results for a depth of 1/4" from the heated surface. Note

that the time constants increase by an average of less than 10 percent for the five thermocouples

when the material thickness is increased from 1/16" to 1/4".

Figure 6.3 shows typical plunge test transients for one of the five thermocouples as

installed in the C-P material at two different depths from the heated surface. Two plots are

presented in Figure 6.3; one showing an 8000 second trace, and the other showing the first 1000
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Figure 6.2 Photograph of Furnace and Plunge Test Setup
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seconds of the same transient. It is apparentthat it takes a little more than one hour for the

thermocoupleto cometo equilibriumwith the temperatureof the C-Pblock.

A similarset of plunge tests were performed on a test specimen provided by NASA during

the Phase I project. The test specimen was a block of solid material with three embedded

thermocouples (Figure 6.4). The three thermocouples were at different distances from the specimen

surface that was exposed to the furnace heat during the plunge tests. These distances were

identified from the X-ray of the specimen that is shown in Figure 6.4. The plunge test results are

given in Table 6.3. Note that the time constant results change by only about 10 percent when

material thickness is changed by as much as 0.28".

6.2 LCSR Test Results

The thermocouples that were identified earlier in Table 6.1 were LCSR tested as installed in

the composite material while the block was in the furnace at 300°F. The results are listed in

Table 6.4 and compared with corresponding results from plunge tests of bare thermocouples and

plunge tests of thermocouples as installed in the C-P material.

It is apparent from the results in Table 6.4 that the LCSR test provides results which agree

only with the response time of the thermocouples as tested bare rather than the response time of

thermocouples in the composite block.

6.3 Effect of Temperature on LCSR Results

The thermocoupies identified in Table 6.1 were LCSR tested as installed in a composite

material at four different temperatures. The purpose of these tests was to determine if the
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TABLE 6.2

Embedded Thermocouple Response Times Obtained by Plunge Test
into a Furnace at 300 °F

Time Constant (sec)

Tag Bare
Number Thermocouple 1/16' Material Thickness 1/4" Material Thickness

N28 6.0 1026 1176

N29 6.5 1014 1044

N30 5.3 636 756

N31 1.5 846 894

N33 1.6 1080 1140
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TABLE 6.3

Plunge Test Results for Thermocouples in
Test Specimen sent to AMS from NASA

Tag Number Response Time (sec) Material Thickness (in)

N34 528 0.276

N35 480 0.157

N36 588 0.433

TABLE 6.4

Comparison of LCSR and Plunge Test Results for Representative
Thermocouples Tested in a Furnace at 300°F

Tag
Number

N28

N29

N30

N31

N33

Plunge Test time Constant (sec)

Bare

Thermocouple

6.0

6.5

5,3

1,5

1.6

Thermocouple Installed
in Composite Block

,,, ..... , ,, ,, ,,

1026

1014

636

846

1080

LCSR Results (sec)

Thermocouple Installed
in Composite Block

,,, , , ,,,, ,,

3.6

4.0

4.0

1.4

1.2
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temperature of the composite material has an influence on the dynamic response of the embedded

thermocouples. The results are shown in Table 6.5. Each value shown in Table 6.5 is the average

of three LCSR results obtained for each thermocouple in three different locations in the block.

These results tend to show that the response times of these thermocouples generally increase with

temperature.

6.4 Effect of Thermal Compounds on LCSR Results

The five thermocouples identified in Table 6.1 were LCSR tested to illustrate that the use of

a thermal compound to install a thermocouple in a composite material can help improve the

dynamic response of the thermocouple. Table 6,6 shows the results. These results are from LCSR

tests of the thermocouples in holes that were slightly larger in diameter than the thermocouples.

The filler material was Boron Nitride which was used in both dry and slurry forms between the

outside wall of each thermocouple and the inside wall of the holes in the composite block. The

slurry mixture was made by mixing the dry Boron Nitride with a small amount of water. The use of

slurry mixture of Boron Nitride has been a common practice in the SPIP program for installing

thermocouples inside composites. The mixture has good thermal properties and can help fill any

air gap between a thermocouple and the composite block and improve the transient response of

the thermocouple.

Figure 6.5 shows LCSR transients for a thermocouple in a C-P composite with and without

the use of a thermal compound. It is apparent that the thermal compound can make a significant

difference in reducing the sensor-to-solid lag.

6.5 Effect of Air Gap on LCSR Results

In order to quantify the effect of air gaps on response times of thermocouples in solids,

LCSR tests were performed on three thermocouples that were installed in a solid material with radial
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TABLE 6.5

LCSR Results for Embedded Thermocouples as a Function of Temperature
of the Composite Material in Which the Thermocouples were Embedded

Room Temp.

LCSR Results (sec)

Tag Number

N28 2.3 3.2

N29 2.5 3.9

N30 2.7 3.6

1.6N31

300°F

1.4

600°F 900OF

3.0 4.7

4.7 6.1

4.1 6°3

0.9 1.5

N33 1.1 1.1 0.8 1.4

TABLE 6.6

LCSR Results for Thermocouples as Installed in a Composite Block
With and Without Filler Material

LCSR Results (sec)

No'FlllerMatei;a' .........Is,,rry Filler 'Materiali,Tag Number

N28 11.9 7.3 4.1

N29 17.2 4.8 4.2

N30 14.5 9.9 3.3

N31 4.4 0.1 1.4

N33 6.8 0.1 2.2

,,,,, ,,,, ,,, , , ,

Dry Filler Material
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gaps of 1/16" and 1/8". The test setup is shown in Figure 6.6 and the results are shown in

Figure 6.7 for three types of thermocouples in terms of increases in installation indices due to the

air gap. It is apparent that doubling the radial air gap approximately doubles the increase in the

installation index. Another way to state this conclusion is to point out that 1/16" of radial air gap

increases the LCSR results by 15 to 20 seconds. Figure 6.8 shows representative LCSR transients

for one of the air gap experiments.

Laboratory experiments were also performed to determine the effect of air gaps at the tip of

a thermocouple that is installed in a solid material. The results are shown in Figure 6.9 in terms of

increases in response time due to an air gap (1/4") at the tip of the thermocouple. A comparison of

results in Figures 6.7 and 6.9 indicates that a radial air gap slows the thermocouple down much

more than an air gap at the tip of the thermocouple.

6.6 Effect of Heating Current and Heating Time on LCSR Results

The level of electrical currents that are used to heat a thermocouple for LCSR testing and

the heating time are often important in providing reliable LCSR results. Therefore, laboratory

experiments were performed on several thermocouples to determine the optimum levels of current

and heating times. Representative results are shown in Figure 6.10 in terms of LCSR transients for

a 1/16" Type K thermocouple. It is apparent from this figure that 0.5 amps do not provide a very

good LCSR transient, while 1.0 amps provide excellent LCSR data. For the same sensor, only two

seconds of heating is all that is required to provide a good LCSR transient as shown in Figure 6.11.

Also shown in Figure 6.11 are LCSR transients for another thermocouple (a 1/16" Type J)

for which two seconds of heating is insufficient but 5 seconds yields a good LCSR transient. Of

course, both the ileating currents and heating times that are required for LCSR tests depend very

much on thermocouple dimensions, wire resistance, and the heat transfer condition in which the

thermocouple is used. The results given in Figures 6.10 and 6.11 were for thermocouples installed
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inside a solid block in cylindrical holes that tightly matched the outside diameter of the

thermocouple.

A simple procedure can yield the optimum heating time and heating current for LCSR testing

of a thermocouple. The thermocouple may be heated with a fixed amount of current (e.g., 0.5 amp)

for heating times of as little as 2 seconds to as high as 20 seconds. This experiment will reveal the

minimum heating time that is needed to provide a good LCSR transient. The LCSR test unit that

was developed in this project for NASNMSFC is equipped with a timing mechanism which allows

the user to adjust the heating time as necessary to conform to this procedure. Alternatively, a

default heating time (e.g., 5 seconds) can be used and LCSR tests repeated with various levels of

current (from about 0.5 to 3 amps) to identify the optimum current for LCSR testing.

6.7 Repeatability of LCSR Results

LCSR tests were performed on a thermocouple in three different locations in a composite

block. The results are shown in terms of LCSR transients in Figure 6.12. The three test transients

are superimposed indicating that the response time of the thermocouple is not dependent on its

location in the block even though the locations were at different depths in the block. This is

consistent with earlier conclusions that the LCSR results for a thermocouple in a solid material is

predominantly a function of how well the thermocouple is attached to the solid material. If the

thermocouple is tightly installed in the material, then the LCSR result is dominated by the dynamics

of the thermocouple itself. On the other hand, if the thermocouple is not in good contact with the

solid material, then the LCSR results will depend on the size of any radial air gap between the

thermocouple and the material unless the gap is filled with a thermal couplant.

Figure 6.13 shows LCSR transients for the same thermocouples as Figure 6.12, tested in the

same three locations in the same block at an elevated temperature (600°F). Again, the LCSR results

provide comparable results in the three locations.
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It was stated before that the response time of thermocouples installed in a solid material may

increase with temperature. Figure 6.1 4 shows LCSR results for six thermocouples that were tested

in three locations in the same block at three different temperatures. It is apparent that the response

times of three of the six thermocouples have increased with temperature. This could be the result

of either one or both of the following: 1) the response time of the thermocouple itself increased with

temperature, and 2) temperature caused expansion and contraction in the thermocouple and the

host material which can change the fit between the thermocouple and the material and affect the

response time. It is also important to note that the LCSR results are very repeatable for the three

locations in the block. Although the results change with temperature, the LCSR results for each

thermocouple are almost the same in the three holes tested.
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7. RESULTS OF LABORATORY TESTING OF THIOKOL BLOCKS

To increase the value of this Phase II project to NASA, AMS worked with NASA

contractors; Thiokol Corporation and Hercules Aerospace Company, who have been involved

in development of improved composites under the SPIP/SRM nozzle programs. In particular,

AMS performed laboratory testing on thermocouples that were installed in composite materials

made by Thiokol. The tests involved forty-two panels known as the "SPIP 94 Analog Test Matrix."

Each panel was a composite block of C-P material made by Thiokol under a subcontract with

Hercules for NASA. The composite blocks were made using different ply angles and

thermocouples were installed in the block using two different mounting procedures. Up to six

thermocouples were installed in each block. Some of the thermocouples were installed in a plug

inside the block as shown in Figure 7.1, and others were cured into the composite as shown in

Figure 7.2. The latter is referred to as cured-in-place or CIP installation meaning that the

thermocouple was embedded into the C-P material when the material was manufactured. The

test matrix was made for NASA to: 1) determine the difference between the CIP and plug

installation techniques, 2) study the effect of ply angle on the performance of composites, 3)

identify side gap effects, 4) determine the contributions of Boron Nitride on reducing

thermocouple lags, and 5) quantify heat rate effects.

All thermocouples used in the Thiokol blocks were 0.01" O.D., sheathed, Type K

thermocouples manufactured by Delta M. The plug installation involved Boron Nitride in the plug

to fill any air gap between the thermocouple and the solid material.

The purpose of the AMS tests was to evaluate the CIP and plug installation methods and

identify any outlier thermocouples in terms of response time. After AMS testing, the blocks were

sent to SRI for firing tests.
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Figure 7.3 shows LCSR test transients for six thermocouples in one of the Thiokol blocks.

The schematic of a typical block is provided in Figure 7.4 showing the three thermocouples that

were installed in plugs and the three that were cured into the block. The numbers shown in front

of each thermocouple correspond to the distance of thermocouples from the bottom of the block

which was fired at SRI.

It is apparent from the LCSR transients in Figure 7.3 that plug installation provides better

dynamic response than CIP installation. Intuitively, however, one would think that curing the

thermocouple should result in a better contact between the thermocouple and the material than

the plug installation. This would have probably been the case if a thermal compound was not

used in installing the thermocouples in the plug.

Figure 7.5 shows histograms of LCSR test results for thermocouples that were LCSR

tested in the 42 blocks of the SPIP 94 Analog Test Matrix. The details and the individual results

are given in Appendix D. The histograms in Figure 7.5 show that the CIP method results in more

consistent response times than the plug installation method. More specifically, there is less

scatter in the LCSR results for the CIP method than the plug method. Most of the CIP results are

in the 0.75 to 1.05 second range which encompasses the mean value of the response time

results and constitutes almost a "Normal or Gaussian" distribution. In contrast, the plug

installation method has much variation in response time results although it yields faster response

times.

Following the laboratory tests at AMS, the Thiokol blocks were sent to SRI where analog

temperature data were collected during test firings. Figure 7.6 shows analog test results for six

thermocouples in one of the Thiokol blocks (block # SRI-1-21). In all cases, the CIP lags behind
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the plug. The discontinuities in the LCSR transients in Figure 7.6 are points at which the

thermocouples failed due to high temperature.

The analog test at SRI identified fourteen inconsistent thermocouples, twelve of which

were identified by LCSR tests at AMS prior to the firing at SRI.
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8. TESTING OF BLAST TUBE LINER MATERIAL

The SRM blast tubes are lined with a material to protect the booster against the high

temperatures that are involved when the booster is fired. As in the case of composite materials for

SRM nozzles, NASA and the aerospace community have been interested in the thermal behavior

of the blast tube liner material. As such, thermocouples have been installed in the liner material of

test blast tubes (scaled models) to determine the thermal behavior of the material. An array of

thermocouples assembled into a unit called an "Erosion Monitoring Thermocouple Array" gage or

EMTA gage has been designed to make the temperature measurements in blast tube materials.

Figure 8.1 shows the schematic of an EMTA gage.

Thiokol provided AMS with a number of small diameter (0.005"), Type K thermocouples of

the types used for temperature measurements in testing blast tube liner material. The bare (not

installed in a solid material) thermocouples were LCSR tested in air at the ambient temperature. The

purpose of these tests was to show that the LCSR test can be performed on thermocouples

successfully, identify optimum LCSR test currents and heating times, and to ensure that the LCSR

test cannot harm the thermocouples. Representative results of these tests are shown in Figure 8.2.

Additional testing was then performed on EMTA gage thermocouples while the gage was

embedded in a sample of blast tube liner material (Figure 8.3). Figure 8.4 shows how the gage is

installed in the material and Figure 8.5 shows LCSR transients for the six thermocouples in the

EMTA gage of Figure 8.3.

In addition to the EMTA, a gage manufactured by Medtherm Corporation was sent to AMS

for laboratory testing. This gage was of the type that was scheduled to be installed in an scaled

- 68 -



......._ Thermocouple Leads

/
1/4" Stainless
Steel Tube

Thermocouples Cured
at Different Depths

EMTA Gage Materials

AsNBR

CFEPDM
5066
5067

'\

'\

Face Thermocouple (#1)

Figure 8.1 Schematic of An Erosion Monitoring Thermocouple Array Gage

- 69 -



Thiokol Bare Thermocouples
1

CSS207A-01A

A

"10
o
.N
m

¢G
E
I_

O
Z
v

Q
W
=:
O
Q.
W
@
n,,

¢/7
tO
..I

TIC #s

I T [

0 4 8 12 16

Time (sec)

20

Figure 8.2 LCSR Test Transient for Blast Tube Thermocouples
Tested Bare in the Laboratory at Ambient Air

- 70 -



Figure 8.3 Photographs of EMTA Gage as Embedded in a
Sample of Blast Tube Liner Material
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RedesignedSolid Rocket Motor (RSRM) along with EMTA gages to compare the two gages and

determine which type of installation is preferable. Figure 8.6 shows two photographs of a

Medtherm gage which consists of six Type K thermocouples installed on a rigid frame which

provides support and uniform thermocouple spacing. The Medtherm gages were LCSR tested

in stagnant air at AMSo The results are shown in Figure 8.7.

Following the laboratory tests described above, AMS performed field testing on the EMTA

and Medtherm gages as installed in RSRMs at MSFC. Both pre-curing and post-curing tests

were performed to determine if any changes in thermocouple installation occurred during the

curing of the gages within the liner material. The EMTA gages were cured in several different

materials; 5055 (carbon-phenolic), 5067 (carbon-phenolic), AsNBR (asbestos filled rubber), and

CFEPDM (carbon filler rubber) with each gage containing six 0.005" diameter Type K

thermocouples. The pre-curing tests were performed on eleven EMTA gages using the LCSR

method. The following observations were made during the pre-curing tests (see Appendix E for

identification of gages and a more detailed description of this work).

Thermocouple #2 in gage #28 and thermocouple #4 in gage #40 had low insulation
resistances.

Thermocouple #1 in seven of the eleven EMTA gages had a slower dynamic response
than the other five thermocouples (Figure 8.8).

As a result of AMS tests, EMTA gages #28 and #40 were not cured into the RSRM liner.

After the EMTA gages were cured into the RSRM liner material, a set of post-curing tests

were performed. The post-curing tests involved fourteen EMTA gages. Following are the results

(see Appendix E for details):

• The following thermocouples were found to be open (not functional):
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Figure 8.6 Photographs of Medtherm Thermocouples
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Thermocouple #1 in gage #32
Thermocouple #51 in gage #30
Thermocouple #54 in gage #30

Thermocouple #4 in gage #34 had a low insulation resistance.

Thermocouple #1 in gage #'s 20, 25, 29, 30, 31, and 37 had dynamic responses that
were different from the other five thermocouples in the corresponding gages.

The response time of thermocouple #5 in gage #27 was different than the other five
thermocouples in the same gage.

Thermocouple #2 in gage #24 was different in dynamic response than the other five
thermocouples in the same gage.

When a comparison was made between the pre-curing and post-curing LCSR transients, it was

determined that most of the sensors had a slightly slower response after curing. Figure 8.9

shows a pre-curing and post-curing comparison for one of the gages in the RSRM liner.

Only two Medtherm gages were available for the field tests. All six thermocouples in the

Medtherm assembly at the AFT Center 45 degree location were LCSR tested. The results are

shown in Figure 8.10. The second Medtherm gage located at the AFT Center 315 degree had

only one thermocouple that was tested due to time and schedule constraints. The LCSR

transient for this one thermocouple was comparable to that of the corresponding thermocouple

in the first Medtherm gage.

Figure 8.11 compares typical LCSR transients for the Medtherm and EMTA gages as

installed in the 5066 material. In this graph, the Medtherm transient is faster than the EMTA

transient. This type of difference was also noted in the AsNBR material as shown in Figure 8.12.

The overall conclusion of the field tests was that there were no significant changes in the

installation integrity of either the EMTA or Medtherm gages that could be attributed to the curing

process.
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9. FIELD TESTING OF THERMOCOUPLES AT SRI

9.1 Description of SRI Facilities

On a number of occasions during the Phase I and Phase II projects, AMS provided test

equipment, procedures, and personnel on-site at SRI to perform field measurements in

conjunction with firing tests of composite samples with embedded thermocouples. The

thermocouple tests at SRI were all performed in the Nozzle Ablative Simulation (NAS) apparatus

(Figure 9.1). This apparatus contains an electrically heated test-plate for exposing composite

specimens to temperatures of up to several thousand degrees.

A schematic diagram of NAS is shown in Figure 9.2. Specimens of composite material

are installed in the apparatus between a resistively heated POCO/ATJ graphite element and a

load frame. Teflon tape is placed on the bottom of the specimen to decrease the friction

between the specimen and plates opposite the specimen. The upper portion of the load

assembly is electrically insulated by placing a block of Boron Nitride and pyrolitic graphite

against the heater element opposite the specimen. A graphite block is placed above the pyrolitic

graphite and a load is then applied to each specimen to restrain the specimen during firing

conditions. A photograph of a specimen installed inside the NAS apparatus is shown in

Figure 9.3.

Firing of specimens at SRI is performed by applying an electrical current to a graphite

heater element in the NAS apparatus via a 44 KVA variable transformer. A line voltage of 240 V

is adjusted as necessary using a powerstat. The heater element is connected in series with a

transformer and heat fluxes in excess of 800 kW/m 2 can be applied to the specimens. The
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Figure9.1 Photograph of SRI Nozzle Ablative Simulation
Apparatus and Loading Fixture
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Figure 9.3 Closeup of NAS Apparatus with Specimen Installed in Fixture
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specimen's temperatures during the tests are measured using Type K and Type S

thermocouples. An optical pyrometeris also used to verify the surface temperatureof the

compositespecimenduringthe test. The amountof oxidationwhich occursduring the firing is

reduced by injecting a steady flow of nitrogen (moderator)into the test area. In addition,

insulationmaterialis placedaroundthe specimento reducecharringof the specimenand test

apparatus.

Figure9.4 showstemperaturedata from a NASfiringtest at SRI. This type of transient

is referred to as analog temperature data. Due to high temperatures involved, some

thermocouples,especiallythose usedto recordtemperaturesof the firedsurfaceof specimens,

sometimesfail duringthe tests. Figure9.5showsanalogtemperaturedata for a case in which

the surfacethermocouplefails 35secondsafterfiring. Figure9.5 also showsthat three of the

four embeddedthermocouplesexhibiterraticbehavioras they reachhigh temperatureswith!n

the specimen.

9.2 First Series of AMS Tests at SRI

The first series of tests which AMS performed at SRI involved thirty-nine thermocouples

which were used in the "SPIP 48-3 Analog Instrumentation Tests." A listing of these

thermocouples is given in Table 9.1. The thermocouples were installed in seven different

carbon-phenolic (FM5055) blocks. Each block (or specimen) is identified with an SRI number

and a thermocouple number as shown in Table 9.1.

Figure 9.6 shows a photograph of one of the blocks (#28). Both Type K and Type S

thermocouples were used in the blocks. Type K thermocouples were first inserted in cylindrical
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TABLE 9.1

Listing of Thermocouplea Involved in the $PIP-48-3
Analog Instrumentation Tests

Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Thermocouple
Tag Number

SRI-29-01

SRI-29-02

Thermocouple
Type

K

K

SRI-29-03 K

SRI-29-04 K

SRI-29-05 S

SRI-30-01 K

O.D.

(Inches)

0.01

0.01

Loop
Resistance

159.68

160.03

0.01 159.85

0.01 160.42

0.005 10.7

0.01 159.75

SRI-30-02 K 0.01 165.02

SRI-30-03 K 0.01 160.26

Installation Index
Obtained from

Pre-Firing LCSR
Tests (sec)

1.7

1.6

3.0

2.0

4.3

0.8

SRI-30-04 K 0.01 159.58 1.5

SRI-30-05 K 0.01 151 ol7 0.9

SRI-30-06 K 0.01 160.31 1.3

SRI-30-07 K 0.01 159.23 0.4

SRI-30-08 K 0.01 151.88

SRI-30-09 K 0.01 155.98

SRI-20-01 K 0.01 159.36

159.O8

157.64

158.3

155.86

158.86

158.1

160.41

160.33

SRI-20-02 K 0.01

SRI-20-03 K 0.01

SRI-20-04 K 0.01

SRI-20-05 K 0.01

SRI-20-06 K 0.01

SRI-20-07 K 0.01

SRI-20-08 K 0.01

0.01KSRI-20-09

1.9

1.2

2.0

1.5

0.8

1.4

1.5

1.1

1.1

0.9

1.2
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TABLE 9.1
(Continued)

Listing of Thermocouples Involved in the SPIP-48-3
Analog Instrumentation Tests

Item

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Thermocouple
Tag Number

SRI-24-01

SRI-24-02

Thermocouple
Type

O,D°

(Inches)

Loop
Resistance

(a)

Installation Index
Obtained from

Pre-Firing LCSR
Tests (sec)

K 0.01 158.22 1.0

K 0.01 152.24 1.5

K

0.005

0.01

0.01

0.01

0.01

0.005

0.01

10.07SRI-24-03 S

SRI-25-01

2.5

164.66 1.6

160.11 0.7

153.87 2.5

159.36 1.7

10.82 3.3

154.52 1.7

SRI-25-02 K

SRI-25-03 K

SRI-25-04 K

SRI-25-05 S

SRI-23-01 K

SRI-23-02 K

SRI-23-03" S

SRI-28-01 K

SRI-28-02 K

SRI-28-03 K

0.01 142.6 1.7

0.0O5 8.33 N/A

0.01 158.43 2.0

0.01 158.67 1.4

0.01 160.1 1.5

SRI-28-04 K 0.01 160.77 1.7

SRI-28-05 S 0.005 10.88 4.2

* Thermocouple was not testable.
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Figure9.6 Photographof Specimen#28 Used in the SRI Tests
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plugs. Eachplug, with up to threeembeddedthermocouples,was then installedand bonded

into a hole machinedinto the block as shownin Figure9.7. Eachblock had up to three plugs.

The thermocouples were embedded in the specimens using different installation

techniques.Thefollowingis a procedureused byThiokolfor manufacturingof a specimenand

the embeddingof the thermocouplesin the material:

Construction of Plugs

1. Note the ply angle and the orientation for cutting of the plug.

2. Cut the plugs to the appropriate length, be sure to maintain the
play angle and the proper orientation.

3. Machine the plugs to 0.375" diameter.

4. Machine a chamfer on the bottom of the plug.

5. Machine a 0.032" slot on the sides and a 0.0064" alignment groove
on the top of the plug.

6. Drill 0.020" holes in the plug side for each thermocouple to a depth
of 0.25" from the plug O.D.

7. Measure and mark the location of the holes in the sample blocks.

A typical finished plug is shown in Figure 9.8.

Preparation of Specimen Block

,

.

10.

11.

Using a carbide drill bit, bore a pilot hole to a depth of 0.10" into
the specimen block.

Using a 3/8" carbide drill bit, bore the hole in the specimen block
to a depth of 0.10" short of the final depth.

Using a 3/8" carbide end mill, complete the hole depth creating a
flat bottom hole.

Measure and record the dimensions of the plug and the hole.
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Figure 9.7 Illustration of a Composite Block with Thermocouples
Installed in Plugs Embedded in the Block
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Figure 9.8 Illustration of Finished Plug Used in Carbon-Phenolic Specimens
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Figure 9.9 Illustration of Finished Specimen Block Used in SRI Tests
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12. Measureand recordthe resistanceof each thermocouple.

A typicalspecimenblock is shownin Figure9.9.

Installation of

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Plug into Specimen Block

Dry fit the plug to the hole in the specimen to assure proper fit.

Coat the thermocouples with the proper filler material then bond
the thermocouple into the holes in the plug.

Clean the instrumented plugs and holes, and allow to air dry.

Apply bonding material to the upper two-thirds of each plug.

Use a screwdriver in the alignment slot to position plug in the hole
in the sample. Tap lightly to ensure seating at the bottom of the
hole.

Carefully bend the thermocouples over and secure to sample block
with tape. Apply a small amount of bonding material over the wire
at location of bend.

Use tape to apply pressure and maintain proper plug installation
until bonding is cured.

Bonding should be cured at 70°F or more for 24 hours.

After curing, remove restraining devices.

Measure and record the resistance of each thermocouple.

Insertion of the SRI Thermocouples

23. Insert the Type S thermoelements through an alumina sleeve and
construct the thermocouple.

24. Drill a hole in the specimen block approximately 0.02" diameter
along an isotherm.

25. Insert the thermocouple into the dry hole within the block and
secure the thermocouple to the outside of the specimen.

Upon completion of the assembly, the specimens are X-rayed to ensure that the

thermocouples are accurately installed in the specimen plugs and no inconsistency (such as a
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void betweenthe bottomof a plug and the bottomof a specimenhole) is presentin anyof the

specimens.

Figure9.10 illustratesa compositeblock and the thermocouplesused in the SRItests.

Thethermocoupleswere installedin the specimensin the followingfive configurations:

,

2.

,

.

,

Sheathed thermocouples installed into a plug with no filler material.

Unsheathed thermocouples installed into a plug with no filler
material.

Sheathed and unsheathed thermocouples installed into a plug with
graphite filler material.

Sheathed and unsheathed thermocouples installed into a plug with
Boron Nitride filler material.

Sheathed thermocouples installed on the face of the plug.

9.3 SRI Test Results

Two series of tests were performed at SRI: analog tests conducted by SRI personnel, and

LCSR tests performed by AMS.

The analog tests were performed on all thirty-nine thermocouples. The objectives of the

analog tests included the following:

Evaluate the response time of sheathed versus unsheathed
thermocouples.

Verify the manufacturing consistency of plugs installed within the
carbon-phenolic specimens.

Determine/verify the best grounding and shielding configuration for
the tests.
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Evaluate methods of installation and location verification of

thermocouples installed within the specimens.

Evaluate the accuracy and consistency of the plug installation
within each specimen.

Evaluate the response of the thermocouples installed on the face
of the plug versus those installed within the plugs.

The overall goal of the analog tests was to determine the best installation configuration

and test methods for the thermocouples that were used in a test nozzle which was later fired.

LCSR tests were performed on each thermocouple before and after firing in the NAS

apparatus. The purpose of these tests was to provide information about the installation integrity

of the thermocouples within the specimens. The post-firing tests were instrumental in

determining if any changes in the response characteristics of the thermocouples had occurred

during the firing.

The pre-firing LCSR results were given earlier in Table 9.1 and representative analog test

data were presented in Figures 9.4 and 9.5. Pre and post-firing results for representative

thermocouples tested at SRI are summarized in Figure 9.11 in terms of response times obtained

from the analysis of the LCSR data. Of the nine sets of results shown in this figure, three indicate

significant increases in response times. Raw LCSR data for two of the nine thermocouples are

presented in Figure 9.12. Note in this figure that the post-firing LCSR transient is slower for

thermocouple number 24-02 while thermocouple number 24-01 has almost the same post-firing

transient as its pre-firing transient. This observation is consistent with the quantitative results

presented in Figure 9.11.

Sometimes, the post-firing response times are faster than pre-firing results such as the

case presented in Figure 9.13. That is, firing tests can result in any of the following outcomes:

- 97 -



3.5
CSS091A-25A

r_

u)

CD
E

°_I--

¢/)

O
CL
r_

n"

rr"
0')
(3
._J

3-

2,5-

2-

1.5-

1-

0.5-

i

23-01 23-02 24-01 24-02 24-03 28-01 28-02 28-03

Thermocouple Tag Number

28-O4

Pre Firing _ Post Firing

Figure 9.11 Pre and Post-Firing LCSR Results for Representative
Thermocouples Tested at SRI

- 98 -



4OOO

SRI-24-01
CSS088A-O7A

"0

E
0
z
v

"5
CL

"5
0

3000-

2000-

1000-

POST - FIRING

PRE - FIRING

0

Time (sec)

10

4000

SRI-24-02
CSS088A-O8A

"0

0
z
v

"5
Q..

0

3000-

2000-

1000-

PRE - FIRING'_
POST - FIRING i

o _ _, 6 A lO
Time (sec)

Figure 9.12 Pre and Post-Firing LCSR Transients for Thermocouples in Specimen #24

- 99 -



4000
SRI-28-01 CSSO88A-O4A

I

(D
N

C_
E
O
Z
v

O

3000-

2000

1000

PRE - FIRING

POST - FIRING

I I I I

0 2 4 6 8

Time (sec)

10

Figure 9.13 Pre and Post-Firing LCSR Transients for Thermocouple #1 in Specimen #28

- 100 -



1) cause no change in thermocouple installation thus leaving the response time unchanged, 2)

increase the response time by changing the thermocouple bonding, or 3) decrease the response

time by causing the thermocouple to fit better inside the solid material. In any of these cases,

it is important for the analyst to know how to account for the thermocouple lag in validating the

analytical models of composite materials for SRM nozzles and other applications. The LCSR test

provides an excellent tool that can be used to inform the analyst if the thermocouple response

time has remained the same, increased, or decreased during the firing tests.

To provide a comparison between results of the analog and the LCSR tests, the amount

of time that was required for a thermocouple to reach 1000°F at the SRI tests was calculated for

each block. This temperature was selected because all thermocouples in the SRI specimens

managed to reach this temperature. The purpose was not to compare LCSR response times with

the calculation of response time to reach IO00°F. Rather, the purpose of the comparison was

to determine if a thermocouple which indicated a slow response in the analog tests, would also

indicate a slow response in the LCSR tests. In most cases, the two results were comparable as

shown in Figures 9.14 and 9.15. In each figure, two sets of bar charts are presented. One

shows the analog test results and the other shows the LCSR results. As seen in these figures,

the analog and LCSR results correlate fairly well. More specifically, when a thermocouple

showed up slow in the analog tests, the LCSR test also showed a slower response, and vice

versa.
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10. FIELD TESTING OF THERMOCOUPLES AT MSFC

In August 1993, AMS tested forty-four thermocouples embedded in the 48"-3 instrumented

scaled nozzle at MSFC. These tests were performed after the completion of the NASA Phase I

SBIR project (NASS-39814) and prior to the NASA Phase II project (NASS-40165). This testing

was performed to assist in the evaluation of the analog temperature data obtained from the

nozzle firing tests. The LCSR method was used in these tests for determining the installation

integrity of the thermocouples prior to the hot firing of the nozzle.

Figure 10.1 shows a cross sectional view of the scaled nozzle and some of the

thermocouples that were installed in the nozzle and were tested in this project. The nozzle is

divided into six major areas containing thermocouples. Each area had a group of three

thermocouples located radially at different angles around the nozzle with the exception of the 40

and 65 degree throat areas which had only two thermocouples. Four different composite

materials (FM5055, FM5952, MX4996 and FM5939) were used at the various thermocouple

locations and rotational angles around the nozzle. The temperature sensors embedded in the

nozzle were small 0.0t 0" diameter Type K thermocouples manufactured by Delta M. Table 10.1

lists the location of each thermocouple, the material at each location, and the results of

thermocouple LCSR testing. These results correlate with the degree of sensor attachment to the

host material.

Figures 10.2 and 10.3 show a graphical representation of the response times of each

sensor grouped by the type of material in which the thermocouple was installed. As indicated

in Table 10.1, four thermocouples were not testable due to open circuits. Also, sensor 85T9116

located at the 270 degree throat location was found to have reversed leads. As illustrated in
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TABLE 10.1

Results of LCSR Testing of Thermocouples in
the 48"-3 Instrumented Nozzle at MSFC

Thermocouple
TagNumber

85T9001

85T9002

85T9003

85T9004

85T9005

85T9006

85T9010

85T9011

85T9012

85T9013

85T9014

85T9015

85T9119

85T9120

85T9121

85T9122

85T9113

85T9114

85T9115

85T9116

85T9117

85T9118

Material

FM5055

FM5952

MX4996
(2800)

MX4996
(2800)

FM5055

FM5055

FM5055

FM5952

Location

85 Degree
Fwd Inlet

270 Degree
Fwd Inlet

20 Degree
Aft Inlet

260 Degree
Aft Inlet

40 Degree
Throat

65 Degree
Throat

85 Degree
Throat

270 Degree
Throat

LCSR Results
(sec)

2.2

2.0

2.7

1.4

1.9

2.0

1.7

1.9

_k

1.1

1.1

1.7

2.2

2.8

3.5

1.4

1.6

2.1

* = Not Testable, failed open circuit thermocouple leads
** Thermocouple leads reversed
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TABLE 10.1
(Continued)

Results of LCSR Testing of Thermocouples in
the 48"-3 Instrumented Nozzle at MSFC

Thermocouple
Tag Number

85T9275

85T9276

85T9277

85T9284

85T9285

85T9286

85T9281

85T9282

85T9283

85T9287

85T9288

85T9289

85T9801

85T9802

85T9803

85T9804

85T9805

85T9806

Material

FM5055

FM5055

FM5952

FM5952

FM5939
LDC

FM5939
LDC

Location

20 Degree
Fwd Exit Cone

FWD

100 Degree
Fwd Exit Cone

Aft

260 Degree
Fwd Exit Cone

FWD

340 Degree
Fwd Exit Cone

Aft

100 Degree
Aft Exit Cone

340 Degree
Aft Exit Cone

LCSR Results
(sec)

1.5

2.1

1.8

1.8

1.5

1.5

1.8

1.9

1.9

2.3

2.2

1.8

2.4

1.6

1.8

3.6

4.0

3.3

* = Not Testable, failed open circuit thermocouple leads
** = Thermocouple leads reversed
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Figures 10.2 and 10.3, the average response of the thermocouples is about 2 seconds regardless

of the composite material in which the thermocouples are installed except for MX4996 which gave

slightly faster responses than the other three materials. In particular, all thermocouples tested

in MX4996 had LCSR results of less than two seconds while the response time of some of the

thermocouples in other samples exceeded two seconds. The LCSR results for the

thermocouples in the four composites ranged from 1 to 4 seconds.

Figure 10.4 shows normalized LCSR transients for the 270 degree throat location

thermocouples illustrating the effect of reversed-connected thermocouple on the LCSR transient.

This is interesting because it shows that the LCSR method can show not only the relative speed

of response of thermocouples, but also provide diagnostic capabilities to identify thermocouple

circuit problems. As discussed elsewhere in this report, the LCSR method can reveal secondary

junctions and in some cases gross inhomogeneities in thermocouple assemblies or extension

wires. The method also has the potential to detect moisture in RTDs and thermocouples.

Additional LCSR transients for some of the thermocouples tested at MSFC are presented

in Figures 10.5 through 10.7. Of the thirty-five nozzle thermocouples that were testable at MSFC,

most showed results indicative of proper and consistent installation.
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11. TESTING THE ATTACHMENT OF RTDs IN SSMEs

Thin-film, 1O0 ohm Platinum Resistance Thermometers (PRTs) are bonded to the surface

of fuel and oxidizer lines in SSMEs to measure temperature as a means of determining if the line

isolation valves are leaking. Referred to as surface-mount or skin-mount RTDs, these sensors

should register the ambient temperature unless there is a leaking valve in the line. In this case,

the RTDs will show a lower temperature than the ambient temperature. This is because a leaking

valve will allow fuel through the line which will lower the temperature of the line.

Since surface-mount RTDs are permanently installed on SSMEs, they are subject to harsh

environments during the firing and flight of the space shuttle. As such, the RTDs may become

loose or detached from the piping and prevent leak detection. Furthermore, if the bonding

between the RTD and the fuel line is poor, the RTD could respond too slowly and prevent timely

leak detection.

Each SSME has three locations where surface-mounted RTDs are installed. These

locations are:

• Main Fuel Valve discharge (MFV)
• Anti-Flood Valve discharge (AFV)
• Oxidizer Preburner Oxidizer Valve (OPOV)

The piping material to which the RTDs are attached are as follows:

• AFV Material - Inconel 625
• MFV Material - Inconel 718
• OPOV Material- Inconel 625
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Figure 11.1 shows the three locations in a SSME where each pair of RTDs is attached to

the metallic piping. This is followed by Figure 11.2 with a photograph of an AFV.

Prompt and accurate temperature indications from the RTDs are important in evaluating

engine performance during SSME firings. The indications from these sensors are used to

determine if engine conditions are appropriate for successful engine operation. An operating

SSME can produce severe vibrational environments causing even the finest adhesives to break

down and allow sensor debonding to occur. A sensor that is poorly bonded or totally detached

from the fuel or oxidizer lines could cause a delay in sensor response and/or produce an

erroneous temperature indication. Thus, a method is required to verify that the RTDs are properly

bonded.

11.1 Testing of Laboratory-Grade Surface-Mount RTDs

In response to NASA's concerns about the bonding of surface-mount RTDs in SSMEs,

a series of laboratory and field tests involving the LCSR method was performed to determine if

this method can be used to verify the attachment of RTDs to SSME fuel lines.

These tests involved several commercially-available, thin-film RTDs, purchased from

OMEGA. Figure 11.3 shows a photograph of the RTDs. These sensors are not of the type used

in SSMEs. Nevertheless, they were obtained for the initial LCSR demonstration tests because

they were readily available and inexpensive. The purpose was to demonstrate the feasibility of

the LCSR method on these sensors, and then move on to testing higher grade RTDs similar to

those used in SSMEso
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Figure 11.2 Photograph of Anti-Flood Line from the Test Bed SSME
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Figure 11.3 Photograph of Surface-Mount RTDs Purchased
from OMEGA for the Laboratory Tests
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The results of LCSR testing of the thin-film RTDs from OMEGA are shown in Figure 11.4

in terms of laboratory response times measured using the LCSR tests. The results are given in

terms of installation indices for the RTDs in both bonded and unbonded conditions. In the

bonded case, the sensors were installed on a metallic surface, and in the unbonded case, the

sensors were in the ambient air detached from the metallic surface. Note in Figure 11.4 that the

installation indices for the unbonded RTDs are from 2 to 20 times larger than the bonded RTDs.

This indicates that the LCSR test can readily distinguish a bonded RTD from an unbonded RTD.

Tests were also performed on one of the RTDs when it was first fully bonded to a metallic

surface, then partially bonded, and finally unbonded. The results are shown in Figure 11.5 in

terms of installation indices obtained from analysis of the LCSR data for the three bonding

conditions mentioned.

11.2 Testing of High-Grade Surface-Mount RTDs

Upon successful demonstration of LCSR method for testing the attachment of thin-film

RTDs purchased from OMEGA, MSFC provided AMS with two RTDs similar (although not flight

qualified) to those installed on fuel and oxidizer lines of SSMEs. In addition, AMS purchased six

commercially available high-grade skin-mount RTDs from Rosemount. Figure 11.6 shows a

photograph of one of the RTDs purchased from Rosemount (Model 118MGB - top) as well as

one of the RTDs obtained from MSFC (Rosemount Model 118BJJ - bottom).

In order to simulate an actual SSME installation, the RTDs mentioned above were

mounted on metallic surfaces in the laboratory using the NASA/RocketDyne bonding procedures

and were then tested to demonstrate that their attachment quality can be determined using the
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Figure11.6 Photographof RTDsof the Type Usedon SSMEsfor Temperature
Measurementson FuelLinesto DetectFuelLeak
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LCSR method. Thin slices of teflon were used to induce various degrees of RTD installation

quality. Figure 11.7 shows LCSR transients for one of the RTDs with varying degrees of bonding.

It is apparent that the LCSR test can readily distinguish between a good bond and a bad bond.

In addition to the LCSR method, the self heating test was employed in the laboratory tests

to verify that, like the LCSR test, self heating index measurements can help characterize the

bonding of an RTD to a solid material. The results are shown in Figure 11.8. The self heating

test is based on heating the RTD with an electric current and measuring the steady state increase

in RTD resistance per unit of input electric power. The results are expressed in terms of ohms

per watt (£2/w). The self heating test procedure calls for applying various levels of current (I) to

the RTD, waiting for the RTD to settle after each current level is applied, and measuring the RTD

resistance (R) after it has increased with the application of the current. The results of these

measurements are then plotted in terms of RTD resistance as a function of the applied power

(P=I2R). The plot for platinum RTDs is usually a straight line. The straight line is referred to as

the self heating curve of the RTD, and the slope of the line is called the self heating index (SHI).

This index is proportional to the response time of the RTD. Figure 11.9 shows self heating

curves for a surface-mount RTD in partially and fully bonded conditions. The corresponding

LCSR transients are also shown in Figure 11.9.

11.3 Effect of LCSR Test on RTD Calibration

During the Phase II project, laboratory calibration tests were performed to verify that the

LCSR method would not affect the calibration of surface-mount RTDs. In response, a number

of surface-mount RTDs were given repeated step changes in current (current cycling) and

calibrations were performed before and after the current cycling to determine the effect on RTD

calibrations.
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Figure 11.10 shows the results of the calibration tests in terms of the difference in the

calibration of RTDs over the range of 0 to 800°F before and after LCSR testing. Results are

shown in Figure 11.10 for LCSR cycling using both 60 mA and 30 mA of DC current. At each

current level, the RTDs were cycled 720 times and the duration of high current exposure was 60

seconds per each cycle. The differences were almost negligible (less than 0.2°F over the range

of 0 to 800°F) indicating that the LCSR tests do not alter the calibration of the RTDs. The

calibration differences displayed in Figure 11.10 are said to be negligible because they are

comparable to the calibration repeatability of the RTDs. Figure 11.11 shows typical differences

between two consecutive calibrations of a surface-mount RTD. This is provided to show the

inherent repeatability of the RTD calibrations.
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12. TEST OF BONDING OF STRAIN GAGES IN SSMEs

12.1 Description of SSME Strain Gages

Most strain gages used in SSMEs are either bonded resistance-type strain gages

manufactured by Micro-Measurements (Figure 12.1) or weldable strain gages manufactured by

HITEC Corporation (Figure 12.2). The bonded resistance type gages are used in moderate

temperatures such as the engine support arms, pump & turbine housings, spring-loaded pump

end ball bearing cells, and the main injection valve. Figure 12.3 shows a photograph of strain

gages installed on a stiff arm in a SSME test bed. Weldable strain gages are used in high

temperature applications in locations such as the turning vanes of the SSME turbo pump

(Figure 12.4) where the primary focus is on dynamic strains.

The bonding of strain gages not only affects the dynamic response of the gage but also

affects the steady-state performance of the gage. Figure 12.5 shows the static response of a

strain gage in bonded and unbonded situations.

12.2 Strain Gage Bonding Tests

LCSR and self heating tests were performed on a number of strain gages in the

laboratory. The results are shown in Figure 12.6 in terms of LCSR transients and SHIs.

Bonded resistance gages consisting of Constantan foil with a Polyimide carrier matrix

were also tested using both the LCSR and SHI techniques. The results showed a strong

correlation between dynamic response and bond quality. This led to testing of higher quality and
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Figure 12.1 Photographof StrainGagesManufacturedby Micro-Measurements
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Figure 12.2 Photograph of a Strain Gage Manufactured by HITEC
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Figure 12.3 Location of Bonded Strain Gages on SSME
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more expensive strain gages which were composed of a nickel-chromium alloy fully encapsulated

in a glass-fiber-reinforced epoxy phenolic resin. These gages were tested on various materials

in both good and bad bond configurations with results showing that the dependance of dynamic

response on bond quality is excellent. Figure 12.7 shows typical test results for a number of

strain gages that were tested in both fully-bonded and poorly-bonded conditions. The poor

bonds were created by intentionally introducing errors into the bonding process. In some cases,

the adhesive was not cured at the proper rate or the gage was bonded without using proper

surface preparation procedures. In other cases, a small piece of Teflon was placed under the

gage during the bonding process and later removed, thus, introducing an air gap between the

gage and the host material. The LCSR technique worked well in detecting a poor bond between

a strain gage and the host material.

In addition to the bonded resistance type strain gages, high temperature strain gages

were tested using the LCSR method. These gages are typically made from platinum or nicrome

wire which is directly affixed to the material substrate with a ceramic cement. The bonding

process used for high temperature strain gages is much more difficult and not as repeatable as

that for bonded resistance type foil gages. After the initial surface preparation, the substrate is

coated with 2 to 3 mils of nickel aluminide followed by a 3 to 5 mU Rokide sprayed aluminum

oxide coating (precoat). The platinum or nicrome wire is then placed on the aluminum oxide

coating and covered with an additional coating of Rokide to hold the sensor in place. This

bonding process is shown in Figure 12.8. It has been determined that repeatability problems in

bonding of strain gages to solid materials can easily result in 1 - 2 mil of variations in coating

thickness (mil is 1/1000"), and make a difference in the strain gage output.

LCSR tests were performed on four high temperature gages with varying precoat
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thicknesses and overcoating voids (Figure 12.9). The gages were provided by HITEC

Corporation along with a description of the bond quality for each gage. Gage A was a good

installation with a 5 mil precoat. Gage B was a good bond with a 3 mil precoat. Gage C was

installed with encapsulation voids deliberately created around the strain gage filaments, and

Gage D was an uninstalled gage taped to the test specimen. The results are summarized in

Table 12.1. Gage A, which had a 5 mil precoat, exhibited an installation index of 0.19 seconds.

Gage B had a 3 mil precoat and an installation index of 0.06 seconds. Gage C had voids around

the strain gage filament which normally would increase the dynamic response but the Rokide

precoat was only 2 mils thick resulting in an installation index of 0.10 seconds. The last gage,

D, was very different from the other gages. In particular, Gage D had an inverse output

(Figure 12.10), and an installation index of 0.66 seconds.

12.3 Effect of LCSR Test on Calibration of Strain Gages

To verify that the LCSR test does not normally alter the calibration of strain gages, two

material samples were instrumented with several strain gages and calibrated before and after

LCSR testing. Figure 12.11 shows the two instrumented blocks. The samples were loaded using

the Instrom tensile testing equipment at the University of Tennessee. The samples were

compressively loaded from 0 to 14,000 Ibs while data was acquired in 2000 Ib intervals. The

calibration was performed twice to establish repeatability. After initial calibrations, the blocks

were LCSR tested repeatedly using DC currents of up to 90 mA. The samples were then

post-calibrated and the results were compared to the initial calibrations. Figure 12.12 shows that

the accuracy of the post-calibration is within the repeatability of the calibration. Therefore, it was

concluded that the LCSR test does not normally alter the calibration of strain gages. Additional

strain gage calibration data before and after LCSR testing is shown in Figure 12.13.
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Figure12.9 Photographof HighTemperatureStrainGages
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TABLE 12.1

Results of LCSR Testing of High Temperature Strain Gages

Gage I.D. Precoat Thickness Installation Index (sec)
(mil = 1/1000 inch)

Gage A 5 0.19

Gage B 3 0.06

Gage C 2 0.10

Gage D N/A 0.66
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Figure 12.11 Instrument Blocks for Testing the Calibration of Strain Gages
Before and After LCSR Tests
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13. TESTING RTDs AND STRAIN GAGES AT MSFC

Field trips were made to MSFC to test RTDs and strain gages to determine bonding

quality. More specifically, the following laboratory and field tests were performed in cooperation

with MSFC: 1) testing of RTDs as mounted on SSME anti-flood lines, 2) laboratory testing of

RTDs and strain gages that were attached to a specially prepared anti-flood line, and 3)

examination of Cryogenic Unear Temperature Sensors (CLTS). A major facility at MSFC that was

used in this project was the Technology Test Bed (TTB). This is a rocket test-stand facility used

for testing various components of SSMEs. Figure 13.1 is a photograph of TTB. AMS tested

RTDs and strain gages as installed on a test SSME mounted on the TTB (Figure 13.2).

13.1 RTD Testing

Three Rosemount/RocketDyne model 118AUL-1 110£2, flight-qualified, thin-film RTDs were

tested including two (PID-1420A, PID-1421 A) that were attached to an AFL recently removed from

an SSME, and an unattached sensor (H J80) that was still in its Rosemount shipping package.

Figure 13.3 shows the removed AFL.

Insulation Resistance (IR) measurements were first made on all three sensors. The results

for sensors PID-1420A, PID-1421 A, and HJ80 were 2.0 Ga, 100.0 MQ, and 90.0 G£_, respectively.

These results are well above the Rosemount IR specification of 10.0 M£2. Resistance

measurements on PID-1421A showed an open circuit.

Following the IR and resistance measurements, LCSR and SHI tests were conducted on

PID-1420A and HJ80. The results are shown in Figure 13.4 in terms of LCSR transients and self
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Figure13.1 Photographof TTB at MSFC
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Figure 13.2 Photograph of an SSME That Was Installed in TTB
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Figure13.3 Photographof an AntifloodLineUsedin SSMEs
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heatingcurves. In a more recent field test, several surface-mounted RTDs were tested at MSFC

as they were attached to two AFLs. One of the AFLs, #2, was installed on the SSME in

preparation for a firing test, while the other AFL, #1, had been removed from the SSME. A pair

of surface-mounted Rosemount/RocketDyne model 118AUL-1 RTDs were attached to the AFL #2.

Figure 13.5 shows LCSR transients for the two RTDs. The high frequency noise on the LCSR

signals is attributed to SSME test electronics. The difference in the two LCSR transients is small

indicating that the two surface-mount RTDs had comparable installations.

In addition to the two RTDs on AFL #2, sensor 1420A was tested as it was attached to

AFL #1. In an earlier AMS field trip to MSFC, this RTD was LCSR tested before an engine firing

test. The retest of this RTD enabled AMS to analyze the bonding ramifications of a firing test.

Figure 13.6 shows the pre-firing and post-firing results. A small change in the degree of bonding

is evident in the results. The change could have occurred when the sensor was exposed to the

harsh environment of an engine test, or in handling of the RTD during the installation or removal

of AFL #1. Without the reinforcement of the SHI results, the small difference in the LCSR

transients of sensor 1420A would have probably been attributed to repeatability. Therefore, the

self heating test should be used in conjunction with the LCSR test when it is necessary to resolve

small changes in bonding of RTDs to solid materials.

13.2 Strain Gage Testing

Two Micro-Measurements type WK-13-O62AP-350 (Tag #8886 and Tag #8887) gages

located on the main injector, and two M-M type WK-13-500AF-350 (Tag #8582 and Tag #8589)

gages located on the support arm of the SSME were LCSR tested at MSFC. Figure 13.7 shows

typical results. The support arm gages were tested using LCSR parameters similar to those used
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for the main injectorgagetests. Straingage#8582 had an installation index of 0.07 seconds

indicative of a good bond, while sensor Tag #8589 had an index of 0.16 seconds indicative of

a poor bond.

13.3 Testing of RTDa and Strain Gages on a Spare AFL

A specially prepared AFL (#3) was provided to AMS by NASAJMSFC for laboratory tests.

The AFL was instrumented with a pair of Rosemount/RocketDyne 118AUL-1 RTDs (designated

as A and C) mounted radially at one location and four Micro-Measurements strain gages

(designed as 1 through 4) mounted radially in a separate location on the AFL. LCSR and self

heating tests were performed on these RTDs with typical results shown in Figure 13.8 for the

RTDs and Figure 13.9 for the strain gages. Two of the four strain gages (#1 and #2) had open

circuits and were thus not testable. RTDs A and C exhibited very similar dynamic response

indicating similar installation qualities. SHI values were also indicative of very similar installation

qualities for sensors A and C.

13.4 Testing of CLTS

NASA provided AMS with two CLTSs for laboratory testing. The CLTSs are small,

surface-thermometer gages consisting of a thin foil sensing grid laminated into a glass-fiber

reinforced epoxy-resin matrix, and electrically connected in series. These sensors are very

desirable because of their low thermal mass, thin construction (0.10 mm), and good linearity at

low temperatures (-452°F to 150°F). CLTSs are also very stable.

The CLTS sensors provided to AMS for the laboratory tests had been attached by NASA

to a small cylindrical sample of graphite composite. Figure 13.10 shows LCSR transients for the
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two CLTS sensors as tested in the AMS laboratory. The two LCSR signals, which are

superimposed in Figure 13.10, were obtained using 16.5 mA of DC current. The two sensors

exhibited almost identical dynamic characteristics. From the limited laboratory tests performed

here, it appears that the CLTS sensors are LCSR testable.
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14. EVALUATION OF THERMAL COMPOUNDS

Thermal compounds such as Boron Nitride are used in installation of thermocouples in

solid materials. The purpose of the compound is to fill up any air gap between the thermocouple

and the solid material and minimize the lag in transient temperature measurements.

In some nuclear power plants, a thermal compound called Never-Seez was once used

in the thermowells of the reactor coolant RTDs to improve the response time. It was later

discovered that Never-Seez could loose its excellent thermal properties at high temperatures

(greater than 500°F) and cause the RTD response time to increase. As such, the use of

Never-Seez for RTD response time enhancement is no longer prevalent in nuclear power plants.

The effect of temperature on thermal properties of eight thermal compounds were

investigated in this project. This investigation involved the LCSR method. The method was used

to measure the response time of an RTD as installed in each of the eight compounds at

temperatures of up to IO00°F. The goal of the laboratory tests was to determine: (1) how the

heat transfer characteristics of thermal compounds affect the response time of a temperature

sensor, and (2) how thermal compounds react at high temperatures.

Furthermore, a survey of several manufacturers and users of thermal compounds was

performed to: (1) identify the current problems and solutions, (2) discuss how thermal

compounds are used in various applications, and (3) identify optimum mounting techniques. The

results of these efforts are discussed below.

- 160 -



14.1 Laboratory Testing of Thermal Compounds

Eight thermal compounds that may be used in the installation of thermocouples and other

sensors in solid materials were tested. Table 14.1 lists the eight compounds and their

temperature specifications as provided by the manufacturers. One of the compounds, the GIT

(Gallium-Indium-Tin), was obtained from the Oak Ridge National Laboratory (ORNL). This is a

patented material that is intended for a number of applications which include using it as a thermal

compound to improve the response time of thermowell-mounted RTDs and thermocouples. No

temperature data was available for this compound. Figure 14.1 shows a photograph of the eight

compounds that were tested in this project.

LCSR tests were performed on an RTD as installed in each compound. The tests were

performed with the compound at various temperatures starting with room temperature and

extending to IO00°F in 200°F increments. The test results are shown in Figure 14.2. These

results indicate that temperature either does not change the thermal characteristics of these

compounds or improves them. The reductions in the LCSR results indicates that these

compounds become better heat transfer agents at higher temperatures. It should be pointed out,

however, that long-term exposure to high temperatures may reverse the heat transfer ability of

the compounds and cause the response time to increase.

Further evaluation of test results in Figure 14.2 illustrates the temperature dependency of

thermal conductivity of each compound. The 70°F and 200°F bar charts show that the ORPAC

yielded the fastest dynamic response and ECHOTEMP produced the slowest response. For

400°F and 800°F data, the GIT produced the fastest response while ECHOTEMP was still the

slowest. At 800°F, the fastest response was produced by PYROGEL and the slowest by TJC
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TABLE 14.1

Listing of Thermal Compounds Tested in this Project

ITEM¸

1

2

3

4

5

6

7

THERMAL COMPOUND

(GIT) Gallium-Indium-Tin

(TJC) Thermal Joint Compound

Omegatherm

MAXIMUM TEMPERATURE

Echotemp

Not Available

100OF

392 oF

Sonotemp 900 oF

Never-Seez- Pure Nickel Special 2,600°F

1,200 oF

Pyrogel Grade 100

Alumina Based Paste (ORPAC)

500 oF

1,600° F

Figure 14.1 Samples of Thermal Compound Tested for Thermal Characteristics

and Temperature Tolerance
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(ThermalJointCompound),whileat the1000°F,the bestthermalresponsewasgivenbyORPAC

and the slowestby TJC. In summary,it seemsthat eachthermalcompoundhasa temperature

at which its thermalcharacteristicsare optimum.

14.2 Industry Survey

An informal survey of various manufacturing and research facilities was conducted to

determine typical sensor bonding problems and solutions and investigate adhesives that are

currently used to install temperature sensors in solid materials. Participants in the survey

included aerospace companies (Boeing-Seattle, ThiokoI-Alabama and Utah), sensor and adhesive

manufacturers (HITEC, Entran Devices, Micromeasurment), and research facilities (NASA-Marshall

and Lewis, University of Tennessee).

The survey provided: (1) an insight into the type of adhesive bonding performed and

adhesives or thermal compounds used at various sites, (2) details on

procedures and bonding problems encountered, and

compounds, adhesives, and attachment methods that

attachment results. The results of the survey are attached in Appendix F. These results along

with a literature survey were used to prepare bonding techniques for surface-mounted RTDs and

strain gages. These techniques are attached in Appendix G including a copy of a NASA

procedure for strain gage installation.

specific bonding

(3) details on particular thermal

have provided successful sensor
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15. EFFECT OF HIGH TEMPERATURE ON THERMOCOUPLE RESPONSE TIME

Although properly made thermocouples can normally tolerate temperatures of up to

3000°F, there is always a chance that exposing a thermocouple to temperatures higher than

1000°F may cause measurable calibration or response time changes.

The effect of high temperature on thermocouple response time was investigated in this

project in two ways. One way involved measuring the response time of thermocouples before

and after they were exposed to high temperatures, and another way involved measuring the

response time of thermocouples by plunge testing into a furnace at high temperatures. The

results are described below.

15.1 Response Time Before and After Exposure to High Temperatures

This work involved plunge tests in room temperature water flowing at 3 feet per second.

A number of thermocouples were plunge tested before and after exposure to high temperatures.

The exposure time at the high temperatures was 2 to 3 hours. The thermocouples that were

tested included Type T (Copper-Constantan) and Type K (ChromeI-Alumel), and Type J (Iron

Constantan) sheathed thermocouples with ODs ranging from 1/16" to 3/8." Representative

results are provided in Figures 15.1 (Type 3") and 15.2 (Type K and J). It is apparent from these

results that the response times of these thermocouples remain basically the same even after the

thermocouples were exposed to temperatures as high as 1750°F.
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15.2 ResponseTime MeasurementsBy PlungeTesting Into High Temperatures

The response time of eight thermocouples were measured by plunge tests in a furnace

in stagnant air at temperatures up to 1200°F. The purpose was to quantify the effect of

temperature on response time.

The outcome of the tests are shown in Figure 15.3. It is apparent that as these

thermocouples are plunged into high temperatures, their dynamic responses improve. Results

shown elsewhere in this report and in other literature, however, indicated an increase in response

time with temperature. This type of discrepancy is typical for thermocouples, RTDs, and other

temperature sensors. Industrial thermometry literature have shown that the effect of temperature

on response time of thermocouples (and RTDs) is unpredictable. That is, for some sensors, the

response time decreases at high temperatures, and for others, the response time increases. This

is because temperature can cause changes in material properties of sensors and in air gaps that

exist in the sensor construction material. The thermal conductivities of sensor material often

increase with temperature and should result in improved dynamic responses. However, air gaps

in sensor material can experience expansion or contraction, and oppose any improvement in

response time due to increased thermal conductivities. In fact, the expansion and contraction

of air gaps can not only null any improvement in response time due to increased thermal

conductivities, but also proceed so far as to cause the response time of the sensor to increase

significantly with temperature. _3>
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16. HIGH TEMPERATURE MEASUREMENTS WITH THERMOCOUPLES

16.1 Principle of Range Extension Technique

SRM nozzle tests and other aerospace applications may require temperature

measurements to nearly 4000 ° F. Optical pyrometers may be used for these measurements, but

high accuracy requirements and practical considerations sometimes preclude the use of

pyrometers. Thermocouples can provide better accuracies than pyrometers, in some cases, and

are adaptable to a more diverse set of applications. However, thermocouples are usually limited

to 2000°F. Thus, a new technique called "thermocouple range extension" was developed and

validated in this project for measurement of high temperatures using conventional thermocouples.

The new technique uses a combination of temperature measurements and extrapolation

to provide a means to accurately estimate high temperatures in lieu of measurements. The

principle of this technique is shown in Figure 16.1. The thermocouple is exposed to the

temperature to be measured and its output is recorded as the temperature is increasing until the

thermocouple reaches its temperature limit (e.g., 2000°F). At this point, the sensor either fails

or is removed from the heat source and the resulting data is extrapolated to estimate the

temperature that the thermocouple would have indicated. In essence, the method is like a

plunge test. The plunge test is used to measure the response time of a temperature sensor by

exposing the sensor to a step change in temperature, recording the transient output of the

sensor, identifying the final value of the transient response, and measuring the time which

corresponds to where the transient output of the sensor attains 63.2 percent of the final value.

In the case of a plunge test, the problem is one of measuring the final value to identify the sensor

response time, while in thermocouple range extension, the problem is one of identifying the final

value using a known value of response time.
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The range extension technique requires a knowledge of the thermocouple response time

which can be measured with the LCSR method in a baseline test. Once the response time is

known, the final temperature (T®) can be calculated by a least square fitting of the transient

temperature data to the following equation assuming, for the sake of simplicity, that the

thermocouple is a first order system.

T(t) = T=(1-e t/') (16.1)

In this equation, T is the time constant in seconds, t is time, and T(t) is the transient response of

the thermocouple.

16.2 Validation of Range Extension Technique

To determine the validity and establish the accuracy of the range extension technique,

laboratory plunge tests were performed on nine thermocouples to determine their response time

as follows. The plunge tests were performed in a high temperature furnace at approximately

200°F and response times of thermocouples were identified. The thermocouples were then

exposed suddenly to 800°F. Using Equation 16.1 and the response time measured at 200°F,

the thermocouple output was extrapolated to 800 ° F. The extrapolated data were then compared

with the measured data, and the difference between the measured and calculated values of the

final temperature was identified.

Figure 16.2 shows the transient response of one of the thermocouples to step changes

of 200°F and 800°F. To identify T®, the first few seconds of the 800°F plunge transient was fit

to Equation 16.1 and the response time of the 200OF plunge test was substituted for T. The

resulting T= was compared with the measured final temperature and the difference was

calculated in terms of a percent error.

Figure 16.3.

The percent error as a function of time is shown in
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Figure16.3indicatesthatthe temperatureofthethermocouplecanbeestimatedwithless

than5percenterrorif 90secondsor moredata iscollectedbeforethe thermocoupleis removed,

melted,or destroyedby hightemperature.At about 130seconds,the error isvirtuallynegligible

as shown in Figure16.3. That is, if the thermocoupleis exposedto the high temperatureand

data is recorded for 130 seconds before the thermocouple is removed, then the calculated

temperature using the range extension technique will be very accurate.

The accuracy of the range extension technique depends on the response time of the

sensor, and the sensor response is a function of temperature. Figure 16.4 presents laboratory

test results conducted in this project to determine the temperature dependance of thermocouple

time constant. Although the data in Figure 16.4 indicates a decrease in response time with

temperature, as indicated before, thermocouple response time as a function of temperature is

often unpredictable. Thus, it should be pointed out once again that although most results in this

report have shown that thermocouple response time improves with temperature, there is literature

that shows the opposite to be the case.

One method that can be used to estimate the response time of a thermocouple at the

temperature to be measured involves developing a response time versus temperature curve for

the thermocouple and extrapolating the results to high temperatures as shown in the two sets

of data presented in Figure 16.5.

Figure 16.6 shows the amount of data that is needed to accurately predict the final

temperature of a thermocouple (i.e., T®). These results show that the range extension method,

when used in conjunction with the sensor response time-versus-temperature curve, can provide

a useful tool for accurate estimation of high temperatures.
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17. IN-SITU RESPONSE TIME TESTING OF THERMISTORS

Although thermistors were not found to have been of much use at the SPIP or SRM

nozzle improvement/development programs sponsored by NASA, they were nevertheless

included in the project to provide a complete picture of LCSR applicability to industrial

temperature sensors. In particular, the LCSR method was used to measure the response time

of the thermistors in air and compare the results with corresponding plunge test time constants

to establish the validity and accuracy of the LCSR test. The results are presented in this chapter.

17.1 Principle of Operation of Thermistors

Thermistors are thermally sensitive resistive elements made of semiconductive ceramic

materials. They are typically constructed from a combination of manganese, nickel, and cobalt

oxides. These elements have resistivities ranging from 100 to 450,000 Ohms-Cm.

Thermistors are manufactured with either a positive temperature coefficient of resistance

(PTC), or a negative temperature coefficient of resistance (NTC), with the NTC being the most

commonly used. Figure 17.1 shows a temperature versus resistance curve for a typical NTC

This temperature versus resistance relationship is characterized by the followingthermistor.

equation:

]

where R(T)

R0

= resistance at temperature T (in Kelvin)

= resistance at temperature T O (in Kelvin)
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/t = constant, determined by thermistor type

The change in resistance as a function of temperature of a platinum RTD is small (about

0.4 percent per °C) compared with that of a typical thermistor (as much as 4 percent per °C).

This means that thermistors are much more sensitive than RTDs at low temperatures (-50 to 300

°C). Figure 17.2 is a graphical representation of temperature coefficient of resistivity for both a

platinum RTD and a thermistor over the range of -50 to 300°C.

17.2 Validation of LCSR Method for Thermistors

Laboratory tests were performed to determine if the LCSR method can be used to identify

the response time of thermistors. The thermistors that were tested included both sheathed and

bead-type sensors with various nominal resistances. Figure 17.3 is a photograph of thermistors

that were tested in this project.

Thermistors are LCSR tested in the same manner as RTDs and strain gages. The sensor

is connected to one arm of a Wheatstone bridge and a current of about 5 mA is used to induce

Joule heating (V2/R), which causes the sensor resistance to decrease for NTC thermistor. The

decrease in resistance causes the bridge current to increase gradually and cause further Joule

heating. This effect, called an "auto-catalytic" response, increases until the heat transfer to the

surroundings is equal to that of the Joule heating.

To determine the baseline response time of thermistors, plunge tests were performed in

an air flow loop (Figure 17.4) at various flow rates. The thermistors were also LCSR tested at the

same flow rates. The LCSR data were then analyzed using the same analysis procedure and
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software that have been used for RTDs and strain gages. Figure 17.5 shows typical LCSR

transients for two thermistors tested at different flow rates. It is evident that as the flow rate

increases, the response time of the sensors decreases. Table 17.1 shows a comparison between

representative response time results from plunge and LCSR tests. These results show that the

LCSR method can identify the response time of thermistors with an average accuracy of about

5 percent. Figure 17.6 shows additional validation results in terms of bar charts comparing time

constants from plunge and LCSR tests.

17.3 LCSR Test to Verify the Installation of Thermistors

The installation quality of thermistors was also evaluated using the LCSR technique.

Several thermistors were attached to a solid copper block and tested using the LCSR method.

The results were then compared to the LCSR results for the unattached thermistor. Figures 17.7

presents the outcome in terms of LCSR transients for three different thermistors. This indicates

that the LCSR technique is successful in detecting a degraded bond in a thermistor.
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TABLE 17.1

Representative Results of LCSR Validation for

Response Time Testlng of Thermistors

50 Ft/Sec

10000 2.7 2.5 -7.4

2252 2.1 2.2 +4.8

3000 1.9 1.9 0

25 Ft/Sec

10000 3.4 3.8 +11.8

2252 2.9 3.0 +3.5

3000 2.9 2.9 0

Average Difference (Percent) 4.6
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18. IN-SITU DIAGNOSTICS OF THERMOCOUPLE PROBLEMS

The LCSR technique can be used for thermocouple diagnostics in addition to response

time testing and detection of thermocouple bonding quality. For example, during the field

measurements performed in this project, LCSR testing was able to identify secondary junctions

in thermocouple circuits, and reveal thermocouples that were reverse-connected. These findings

are described below.

18.1 Detection of Secondary Junction in SPIP Thermocouple

In July 1993, AMS performed a series of laboratory LCSR tests on twenty-seven

thermocouples embedded in thirteen carbon-phenolic (FM5055) composite material specimens.

The thermocouples were tested prior to firing of the composite specimens in the "Plasma-Arc

Facility" at MSFC. Most of these thermocouples were small diameter (0.01"), Type K, sheathed

or unsheathed sensors. Three of the thermocouples were unsheathed, Type S thermocouples

made by SRI. The remaining thermocouples were made by Delta M and Thiokol. The results of

the pre-firing installation tests of the thermocouple performed by AMS are shown in Figure 18.1.

Note that one thermocouple, PA-9T, has a much larger installation index than the other thirty-

eight thermocouples. A further analysis of the LCSR data on this thermocouple revealed a

secondary junction in the thermocouple located several inches away from the thermocouple's

measuring junction. A secondary junction in a thermocouple has the following effect on the

LCSR test results. When an AC current is applied to heat the thermocouple for the LCSR test,

the secondary junction also heats up. When the current is cut off, the secondary junction cools

off as well as the measuring junction. Normally, the measuring junction is in a better heat

transfer media than the secondary junction. Thus, the secondary junction cools off at a slower
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rate than the measuring junction and dominates the LCSR transient. Figure 18.2 shows the

LCSR transient for the thermocouple in question in comparison with two other thermocouples in

the same block. Note that thermocouple #PA-9T takes longer to settle out than the other

thermocouples. This is due to the slow cooling of the secondary junction.

18.2 Detection of Reverse-Connected Thermocouple

During LCSR testing of the instrumented 48-3 nozzle at MSFC, a thermocouple was found

to have reverse leads. Figure 18.3 shows the LCSR transients for the reversed-connected

thermocouple, as well as a normally connected thermocouple.

To remedy the situation, the thermocouple connections to the signal conditioning

equipment were also reversed. This helped provide a normal temperature indication and the

firing data from this thermocouple could be used just like the other normal thermocouples.

Reverse-connected thermocouples are a common occurrence because, when the

thermocouple wires are bare, it is not possible to visually distinguish between the positive and

negative legs. The LCSR method provides a simple means for remote testing of normal or

reverse wiring of thermocouples0
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19. CONCLUSIONS

New equipment and techniques were successfully developed and validated to quantify the

degree of bonding between a sensor and a solid material, and to identify the dynamic

characteristics of the sensor. The sensors that were involved in this project included

thermocouples, RTDs, strain gages, and thermistors. The conclusions from testing of each of

these sensors are presented below.

19.1 Testing of Thermocouples

Testing the attachment of thermocouples to solid materials is important to NASA for

validating the theoretical models and computer codes that are developed to describe the

thermostructural behavior of composite materials for SRM nozzles and blast tube liners.

The LCSR method was successfully developed as a tool for verifying the attachment of

thermocouples in solid materials as needed for this and other aerospace applications.

Furthermore, a set of equipment and procedures were developed and delivered to NASA. The

equipment is designed to enable NASA to perform thermocouple tests in-house.

19.2 Testing of RTDs

Testing the attachment of RTDs is important to NASA in the space shuttle program.

Skin-mount RTDs are used on the fuel and oxidizer lines of the space shuttle to measure

temperature as a means of detecting leaks through valves on the lines.
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The LCSR test was successfully developed for verifying the attachment of skin-mount RTDs.

As a result of this work, the foundation has been established for the design and construction of

hardware, software, and procedures for in-situ testing of attachment of skin-mount RTDs in

SSMEs.

19.3 Strain Gages

Strain gages are used in performance testing of SSMEs. As such, NASA was also

interested in testing the attachment of strain gages to solid surfaces. Thus, the LCSR method

was attempted for testing the installation of strain gages. Strain gages operate much like RTDs,

and there were reasons to believe that the LCSR method would work on strain gages as

effectively as on RTDs. This was proven to be the case. In particular, it was shown that,

although the LCSR method can not be used to measure the response time of strain gages, it is

a very successful method for testing the degree of bonding between a strain gage and a solid

material.

19.4 Thermistors

Thermistors were not found to have been used in aerospace applications, probably due

to their limited temperature range. Nevertheless, the LCSR method was applied to response time

testing of thermistors to provide a complete picture on the applicability of this method for

response time testing of the commonly-used industrial temperature sensors. The results showed

that the test can successfully provide the response times of thermistors using the same

equipment and procedures as for LCSR testing of RTDs.
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19.5 Thermocouple Diagnostics

The LCSR method was found useful not only for thermocouple installation tests, but also

for thermocouple diagnostics. In particular, the LCSR test was found to successfully identify

thermocouple circuit problems such as secondary junctions and reverse leads.

19.6 High Temperature Measurements Using Thermocouples

The validity of the range extension technique was successfully demonstrated. This

technique can be used to extend the temperature range of most conventional thermocouples.

The method depends on the LCSR test to provide the response time of a thermocouple that is

then used in combination with a measurement and extrapolation procedure to provide a means

for accurate estimation of high temperatures.
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APPENDIX A

LCSR Theory and Derivation of Transformation Equations





LCSR THEORY AND DERIVATION OF TRANSFORMATION EQUATIONS

ABSTRACT

The Loop Current Step Response (LCSR) test can be used for remote
measurement of response times of Resistance Temperature Detectors (RTDs) and

thermocouples as installed in operating processes. The method provides the

response of the sensor, accounting for most installation and process condition
effects.

This appendix describes the LCSR theory for testing of RTDs and

thermocouples in fluids. The LCSR method for testing the installation of sensors

in solids basically follows the same procedure as the test in fluids. However,

in testing the dynamic characteristics of sensors in solids, the interest is not

as much in determining a response time as it is in distinguishing between a poor

and a good bond. Nor does the LCSR transformation simply provide the

sensor/solid response time.

The information that is contained in the body of this report shows that the

LCSR method is successful in revealing the quality of bonding of a sensor to a

solid material. To quantify the results of the LCSR test for this application,

the LCSR transformation may be used with the understanding that the

transformation was originally derived for LCSR testing of sensors in fluids, not

solids. As such, instead of referring to LCSR results as response times or time

constants, we have referred to them in this report as installation index to refer

to the degree of bonding between a sensor and a solid.

1 • INTRODUCTION

This appendix presents the details of the development and validation of the

Loop Current Step Response (LCSR) method for in-situ measurement of response time

of Resistance Temperature Detectors (RTDs) and thermocouples as installed in

operating processes. The LCSR method has been validated and used for nearly 20

years for measurement of response times of safety system RTDs in nuclear power

plants 11.2,3_ For thermocouples, the validation of the LCSR test was carried out

by AMS nearly i0 years ago under a contract with the U.S. Air Force 14)

2. RESPONSE TIME TESTING METHODS

2.1 Plunge Test

The response time of a temperature sensor is classically measured in a

laboratory environment using a method called the plunge test. In this test, the

sensor is exposed to a sudden change in temperature and its output is recorded

until it reaches steady state. The analysis of a plunge test to obtain the time

constant of a sensor is simple. For example, if the sensor output transient is

recorded on a strip chart recorder, the time constant is identified by measuring
the time that corresponds to 63.2 percent of the final value (Fig. i).

-AI-



I T_ming Signal I

a

'....... i i

Figure i. Determination of Temperature Sensor Time Constant from

an Actual Plunge Test Transient.

It should be noted that although this definition of time constant is

analytically valid only for a first order system, it is conventionally used for

empirically establishing the response time of all temperature sensors regardless

of the dynamic order. Therefore, all references to the terms "response time" or

"time constant" in this appendix correspond to this definition regardless of the

type or size of the sensor, the test condition, or the test method being used
(whether it is the plunge or the LCSR test). It should be pointed out that the

use of the term "time constant" in this appendix is not intended to imply that

RTDs or thermocouples are necessarily representable by first order dynamics.

The time constant obtained by the plunge method is a relative index which

should be accompanied by a description of the test conditions. This is important

because the response time of temperature sensors is strongly dependent on the
properties of the final medium in which they are plunged. The type of medium

(air, water, etc.) and its velocity, temperature, and pressure must always be

specified with the response time results. The fluid velocity is usually the most

important factor followed by temperature and then pressure. These parameters
affect the film heat transfer coefficient on the sensor surface which is related

to the response time. Higher fluid velocities increase the film heat transfer
coefficient on the surface of the sensor and reduce the response time.

Temperature, however, has a mixed effect. On the one hand, temperature acts in

the same manner as fluid velocity, i.e., it increases the film heat transfer

coefficient and reduces the response time. On the other hand, high temperatures

can affect the material properties inside the sensor and either increase or

decrease the response time. Pressure does not usually affect the sensor response

time except for its effect on the fluid properties that control the surface heat

transfer coefficient. In addition to process effects, the response time of RTDs

and thermocouples usually depends on installation, especially when the sensor is
installed into a thermowell.

2.2 LCSR Test

Since the response time of a temperature sensor is strongly affected by

installation and process conditions, laboratory measurements such as plunge tests

in a reference condition cannot provide accurate information about the
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"in-service" response time of the sensor. Therefore, an in-situ method that can

be implemented at process operating conditions must be used. The LCSR method was

developed to provide the in-situ response time testing capability that is needed

to measure the in-service response times of RTDs and thermocouples.

The LCSR test procedure for RTDs and thermocouples is different even
though the principle of the test is the same. For RTDs, the LCSR test is

performed by connecting the RTD to one arm of a Wheatstone bridge and changing
the bridge current from a few milliamperes to a level of about 40 to 80

milliamperes. The step change in current produces Joule heating in the RTD

element and causes its resistance to increase in proportion to the RTD's ability
to dissipate the heat to the environment. The transient change in RTD resistance

produces a transient voltage signal at the output of the Wheatstone bridge which
is referred to as the LCSR transient or the LCSR data for the RTD. This

transient is then analyzed, as described in the following section on LCSR theory,

to provide the time constant of the RTD under the conditions tested.

For thermocouples, the LCSR test is performed by heating the thermocouple

internally by applying an electric current to its extension leads. The current

is applied for a few seconds to raise the temperature of the thermocouple a few

degrees above the ambient temperature. The current is then turned off and the

thermocouple output is recorded as it cools to the ambient temperature. This

output, which is referred to as the LCSR transient or LCSR data for the

thermocouple, is predominantly due to the cooling of the thermocouple junction.

The rate of the thermocouple cooling transient is proportional to its ability to

dissipate the heat generated in its junction. Therefore, the LCSR data can be

used with the analytical approach discussed in the following section to identify

the response time of the thermocouple under the conditions tested.

The LCSR testing of thermocouples is performed using an AC current source

to produce Joule heating. Since the electrical resistance of thermocouple

circuits is small and distributed along the sensor, the heating current must be

large enough to produce sufficient heating and provide a useful LCSR signal when

the current is turned off. Depending on the size and length of the thermocouple

and its extension wires, heating currents of approximately 0.3 to 3.0 amperes are

usually used in LCSR testing of thermocouples as opposed to 40 to 80 milliamperes

of DC current that are used in testing of RTDs. This is because in RTDs,
the resistance of the circuit is much higher and predominantly concentrated at

the RTD's sensing element.

3. LCSR THEORY

3.1 Background

The LCSR test is based on the principle that the output of a thermocouple

or RTD to a step change in temperature induced inside the sensor can be converted

to give the equivalent response for a step change in temperature outside the

sensor. This is possible because the transfer function that represents the

response to an external step change in temperature is related to that for an
internal step change in temperature as follows:

1

Gm""s" = (s-Pl)(s-P2) •••
(I)

I
c_R = [(s -z_) (s -z_)... l (2)

(s -p_) (s -P2) • • •

Where Gplu,g e represents the response that will be obtained in a plunge test and

GLCSR represents the response that will be obtained in a LCSR test. It is clear
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that the plunge response is a subset of the LCSR response meaning that if the

LCSR response is known, thepl,p2 , will be known and can be used to obtain

Gp_e. The derivations that follow are carried out to show how to arrive at

Eqs. (I) and (2).

3.2 Heat Transfer Analysis of a Temperature Sensor

The derivation of the LCSR and plunge test transfer functions given as

GLCSR and GR_._ above are based on the assumption that the heat transfer between
the sensor and the surrounding media is one dimensional (radial). With this

assumption, the heat transfer between the sensing element in RTDs or the hot

junction in thermocouples and the medium (fluid) surrounding the sensor may be

represented by a lumped parameter network such as the one shown in Fig. 2. For

this network, the transient heat transfer equation for node i is written as: (i)

dT_ I (T_-T_) - I
d-T-- - (r,-

(3)

where m and C are the mass and specific heat capacity of material in the node,

and R 1 and R 2 are the heat transfer resistances between node i and the two

adjacent nodes. Eq. (3) may be rewritten as:

az
= ai.i-1 _-1 -ai.i L + a,.,.l _.1 (4)

dt

where

I

ai.i-1 I,_GR1

= 1 (1 + I) (5)
ai'i mc R t R 2

1

ai,i. 1 = mcRz

AMS-DWG THCO3.IA

Ti_ 1
T.

I

T
i+1

Figure 2. Lump Parameter Representation for LCSR Analysis.
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The nodal equations maybe applied to a series of nodes, starting with the
node closest to the center (i = 1) and ending with the node closest to the

surface (i = n) :

dr,
d--T = -all T, + a12 T 2

d--i" = a21T1 - a22T2 + a_T3

dr,
d--"t-= a32T2 - a33T3 + a3'T4 (6)

dT
a

--=a T + a_T v
dt .,n-ITn-l-an,n n

where

temperature of the ith node (measured relative to the initial fluid

temperature).

change of fluid temperature from its initial value.

These equations may be written in matrix form:

dt

where

3

TI l

I
_=

L

h =

-a n a_z 0 0

a2_ -a_ az3 0

0 a32 -a33 a34

0

0

0

0

0 0

0 0

0 0

a.,n -1 -a

0

0

0

a,,F

(8)

Laplace transformation of Eq. (7) gives:

[sl -A l'£(s) = f TF(S ) + -£(t = 0). (9)

The solution for the temperature at the central node, x I _), is found by

Cramer's rule:

-A5-



where

B(;) =

Tl(s ) = __
B(s)

IsI-A I

"TI(O) a_2 0

r2(o) (s+%) -% 0

T3(O) -a32 (S+as3)-a33

[r(o) +a rF(s)l 0 0 0

0

0

-a .... _(s+a,.)

(10)

(ii)

This Laplace transform is general for one-dimensional problems and its

accuracy depends on the number of nodes used. Eq. (9) is solved below for two
different initial conditions, one initial condition to correspond to the LCSR

test and the other to correspond to the plunge test. In the LCSR test, the
temperature in the center node of the sensing element is not ambient at time

t = 0, while for the plunge test, the temperature at the center node is ambient
at t = 0.

3.3 LCSR Equation

For the LCSR test, X_ = 0) is the initial temperature distribution, and

it is a vector with all entries nonzero, meaning that the first column of B_)

in the matrix of Eq. (ii) has all nonzero entries.

Evaluation of the determinants, B_) and [sI-A[, in Eq. (i0) gives:

_) _ - z_) _ - z_) ... _ - __,)
G_) - -K (z2)

T_) _ -Pl)_ -P2)... _ -P.)

where each _ is a zero (a number that causes Tl_ ) to equal zero), and pi is a pole

(a number that causes TIO ) to equal infinity) and K is a constant gain factor

that can be set equal to unity to simplify the equation. The response Tl(t) for

a step change is obtained using the residue theorem (assuming all distant poles):

T 1 (t) =
(-z,) (-z_)... (-z __)

(-p,) (-p_)... (-pD
+ (P, - zl) (Pi - zz)'"(21 - z q) ee,,

(Pl - P2) (P_ - P3) ... (P_ - P.)

(Pz - z,) (P2 - z2)"" (Pz - z_,) eV: + ....

(P2 - P,) (P2 - Ps).'-(22 - P_)

(13)

This may be rewritten as
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T(t) = A 0 + Ate e: + A2 ev: + ...

Ao, AvAv''" =f(Pl, P2 .... zl, z2,''')"

(14)

Eq. (12) is referred to as the LCSR transfer function (GLCSR) and Eq. (14) is

referred to as the equation for the LCSR transient. If the data for a LCSR test

is mathematically fit to Eq. (14), the values of pl, P2,... can be identified and

used to construct the plunge test transient.

3.4 Plunge Test Equation

For a step perturbation of fluid temperature, TF_ ) is nonzero, butx _ = 0)

has all zero entries because the initial temperature distribution is flat and

equal to the initial fluid temperature. In this case, the first column of B_)

contains all zeros, except for the last entry.

In this case, B_) from the matrix in Eq. (I0) may be written as:

B(s) =

0 at2 0

0 (s+a_) -a_ 0

0 -% (s+a_3) -a3_

0

,_T,_(s) 0 0 0 -a .... ,(s÷a )

(15)

Using the Laplace expansion method for evaluation of the determinants, we obtain:

B(s) = a_Tr(s ) (-1) "÷'

-a t2 0

_+%) -%

-% _ +a.)

0 -a_

0 ...

0 0 ...

-d34 0 ...

(s+a44) -a4s ...
(16)

This is a lower diagonal matrix, and its determinant is the product of the

diagonals:

B_) = a_TF_)(-1) _'' (a,za_a _ ... ) . (17)

Therefore:

and the transfer function
r,(s)

is:
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a r,, (s)(-1)""
TI(s) = (18)

(s (s (s -p.)

K
G(s) = (19)

(s-pO(s-DO ...

where K is a constant that can be set equal to unity to simplify the equation.

By using the residue theorem, we obtain the following expression for the fluid

temperature step change (Laplace transform of a unit step, i.e., TF($ ) = I ) :
$

1 I
ee, ,-,,- ,fltt_ = +

1 ep: +...

P2(P2-P,) (P2-P3) "'" (/'2-'3)

(20)

This equation may be written as:

T,(t) = B o + Ba ee'' + B2e e:' +...

Bo, B1,B2 • • • = f (P1,P2, • • ")

(21)

The following observations can be made about the fluid temperature step change

(plunge) case :

i. The exponential terms _I,P2,...) in Eq. (21) are the same as those of the

LCSR equation given by Eq. (14). This is expected since the exponents

depend only on the heat transfer resistances and heat capacities in the

sensor, and these are the same for plunge and LCSR tests.

2. Unlike the LCSR Eq. (14), the coefficients that multiply the exponentials

in Eq. (21) are determined by the values of the poles only and do not

depend on zeros. Therefore, a knowledge of the poles alone is sufficient

to determine both the coefficients and the exponentials of Eq. (21).

3.5 LCSR Transformation Procedure

The results of the derivations carried out above are used with the

following procedure to convert the LCSR transient to give the equivalent plunge

test transient:

i. Perform a LCSR test and sample the data with a computer.

2. Fit the LCSR data to the following equation and identify the pi's. The

Ai's do not have to be identified.

T(t) =A o +AI_" + A2: 't + .... (22)

3. Substitute the pi's identified in Eq. (22) into the plunge test equation

(Eq. 20) to construct the plunge test response.

4. Use the transient identified in step 3 above to obtain the time
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constant of the sensor by determining the time that it takes for the

transient to reach 63.2 percent of its final steady state value.

3.6 Two-Dimensional Heat Transfer

The approach used above can be followed to analyze the thermocouple and RTD

heat transfer based on a two dimensional model. The reader may consult Ref. (i)

for a derivation of the two dimensional equation. The key results of the two

dimensional analysis is that, unlike the one dimensional case, the step response

results have zeros in the transfer function as well as poles. That is, the poles

identified by the LCSR test are not all that is needed to construct the plunge

test response. However, experience with typical industrial RTDs and
thermocouples in typical installations has shown that the errors due to minor

departures from one dimensional assumptions are often not significant.

4. LCSR VALIDATION

The validity of the LCSR test depends on two assumptions about the physical
location of the sensing element in the sensing tip of the sensor. The two
assumptions are:

i. The heat transfer between the sensor and its surrounding fluid must be
one dimensional (radial).

2. The sensing element of the sensor must be located at the center of the

sensor assembly or there must be little heat capacity between the

sensing element and the centerline of the sensor assembly.

These assumptions must be satisfied for the heat transfer to and from the

sensing element to be unidirectional and for the LCSR transient to be

transformable to the plunge test transient. The only reliable and practical

method to ensure that these assumptions are adequately satisfied and that the

LCSR test is valid for the RTD or thermocouple is to perform experimental

measurements. More specifically, each RTD or thermocouple design to be tested

by the LCSR method must undergo an experimental laboratory validation to insure

that the LCSR result is valid and accurate enough for the specific design. The
validation should involve a plunge test followed by a LCSR test performed under

the same test conditions on each RTD or thermocouple design to be validated. The
LCSR data is then analyzed, as was described in the section entitled "LCSR

Transformation Procedure", and the response time result is compared with that of

the corresponding plunge test result to establish the validity and determine the

accuracy of the LCSR method for the sensor design being validated.

For resistance temperature detectors (RTDs), the sensor is said to be

testable by the LCSR method if the difference between its plunge test and LCSR
test results is less than ±i0 percent. For thermocouples, however, a difference

of about ±20 percent is usually used as the threshold for expressing LCSR
testability. (2) This is because thermocouples are more difficult to test with
the LCSR method than RTDs.

4.1 Laboratory Validation Results for RTDs and Thermocouples

Tables I and II present typical validation results for representative RTDs

and thermocouples tested in the laboratory in room temperature water at a flow
velocity of 1 meter per second (m/s). The reasonable agreement between the

plunge and the LCSR test results shown in these tables indicates that the sensors

shown are in-situ testable by the LCSR method.
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TABLE I

LCSR Validation Results for RTDs in Room

Temperature Water at i m/s

RTD Response Time (sec)

Number _Plung_e LCSR

1 7 .I 7.2

2 6.3 6.6

3 4.9 4.9

4 5.2 5.3

5 2.8 2.6

6 3.1 3.1

7 0.38 0.42

8 4.8 4.5

9 4.6 4.2

i0 2.0 2.1

ii 3.5 3.4

12 2.7 2.9

13 5.8 6.2

Percent

Difference

1 4

4 8

0 0

1 9

-7 1

0 0

10.5

-6.3

-8.7

5.0

-2.9

7.4

6.9

The above results include various models of RTDs manufactured by Conax, RdF,

Rosemount and Weed.

TABLE II

LCSR Validation Results for Thermocouples in

Room Temperature Water at i m/s

Thermocouple Outside Response Time (sec)

I.D. Number Diameter (mm) Plung_e LCSR

TYPE E

44 6 1.9 1.6

27 5 1.9 1.8

29 3 1.4 1.3

43 2 0.3 0.4

.TYPE J

46 6 1.8 1.5

36 5 1.4 I.I

38 3 1.8 1.4

40 2 0.4 0.4

TYPE K

4 6 2.7 2.7

7 5 2.7 2.4

9 3 0.7 0.6

13 2 0.3 0.2

The same type of results are listed in Tab. III from testing of

thermocouples in room temperature air at a flow velocity of 14 m/s. Again, the

agreement between the results of the two tests is reasonable in most cases,

indicating that the LCSR method is valid for these thermocouples in air. The

validation of the LCSR method for thermocouples in air is important because

thermocouples are the most widely used temperature sensor for industrial

temperature measurements in air and gases where RTDs can not usually be used due

to the self heating problem inherent in RTDs.
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TABLE IIl

LCSR Validation Results for Thermocouples in

Room Temperature Air at 14 m/s

Thermocouple Outside Response Time (sec)

I.D. Number Diameter (mm) Plung_ LCSR

TYPE E

51 Exposed Junction i.i 0.8

43 2 3.9 4.5

29 3 10.6 12.1

27 5 17.1 22.3

44 6 23.9 32.6

TYPE J

52 Exposed Junction 1.3 1.2

40 2 3.2 3.8

38 3 9.9 12 . 1

36 5 17.5 21.3

46 6 24.9 35.9

T__YPE K

22 Exposed Junction 0.5 0.3

13 2 3.7 3.9

9 3 i0.0 11.3

7 5 17.1 23.0

4 6 25.2 29.7

Note that the thermocouple dimensions given in the tables included in this

appendix are approximate values that were converted from English units and

presented here in round numbers. Also note that the test results given for RTDs

include various RTDs from four U.S. manufacturers and include both direct

immersion and thermowell-mounted RTDs. The RTDs that have been validated for

LCSR testability have mostly been of the types used in nuclear power plants.

This is because of a requirement in the nuclear power industry for periodic

measurement of response times of safety-related sensors to insure that aging

degradation does not cause unacceptable dynamic performance. In addition to

laboratory validation tests, nuclear plant RTDs have been validated for LCSR

testability under simulated nuclear reactor conditions as described below.

4.2 Laboratory Validation Results for RTDs in Nuclear Power Plants

Because of the interest in response time testing of safety related RTDs in

nuclear power reactors, the LCSR validation tests for RTDs were also performed

in a test loop that simulated the water temperature, pressure, and flow that are

found in typical pressurized water reactors. (3) Sample results of these tests

are shown in Tab. IV for four RTDs of the types used in nuclear power plants.

The results listed under plunge test in Tab. IV were actually obtained by sudden

injection of cold water upstream of the RTD as installed in the test loop. A

high speed reference thermocouple was attached to the tip of the RTD, and its

output was used as the timing signal for the injection tests. The water in the

test loop during the LCSR validation experiment was at a temperature of 280oC

(536°F), a pressure of approximately 160 bars (2,320 psi), and a flow velocity

of approximately 5 to 6 m/s (approximately 16 to 20 feet/second).
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TABLE IV

Sample LCSR Validation Results for RTDs in

Nuclear Power Plant Conditions

RTD Time Constant (sec) Percent

Number Plunq_e LCSR Difference

6.2 5.9

4.1 3.7

8.8 8.4

0.14 0.13

1 -4.8

2 -9.8

3 -4.5

4 -7.1

4.3 Validation Results for Thermocouples in Wind Tunnels

Due to the importance of thermocouple response time information in

transient temperature measurements in flowing air and gases, particularly in

aerospace applications, the validation of the LCSR method was also performed in

subsonic and supersonic wind tunnels at ambient temperature c41. The results of

these tests are summarized in Tables V and VI. The good agreement between the

plunge and LCSR results in these tables is indicative of the validity of the LCSR

method for these thermocouples.

TABLE V

LCSR Validation Results for Thermocouples

in Subsonic Wind Tunnel

Thermocouple Response Time (sec)

I .D. Number Plunqe LCSR

27 m/sec - 60 miles/hr

14 1.4 1.2

15 0.7 0.8

16 1.7 1.5

22 0.4 0.5

29 8.0 9.1

40 2.5 4.4

45 m/sec - i00 miles/hr

14 1.2 2.0

15 0.4 0.3

16 i.i 1.0

22 0.3 0.4

40 2.2 3.0

55 m/sec - 123 miles/hr

29 6.0 6.3

In addition to demonstrating the validity of the LCSR method, the results

in Table VI show how the response times of thermocouples are reduced from testing

in air at 14 m/s to testing in the supersonic wind tunnel at Mach 2. The plunge

test results shown under Mach 2 in Tab. VI are extrapolated from laboratory

results using the formulas that provide response time estimates for high heat

transfer coefficients based on measurements made in a laboratory in a fluid at

moderate flow velocities 141.
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Thermocouple
I.D. Number

TA/3LE VI

LCSR Validation Results for Thermocouple in

Supersonic Wind Tunnel (Mach 2)

Wire Outside Response Time (sec)

Diameter (mm) @ 14 m/sec

Plunqe Test

18 1.3 0.14

20 1.3 0.16

22 4.1 0.49

23 4.1 0.50

* Extrapolated from laboratory measurements.

Response Time (sec)
@ Mach 2

Plunqe* LCSR

0.05 0.05

0.05 0.04

0.06 0.06

0.06 0.08

5. ACCURACY OF LCSR TEST RESULTS

The results shown in Tables I through VI and other work completed by the authors
and others have concluded that the LCSR method for RTDs can generally provide response

time results with average accuracies of better than ±i0 percent with respect to the
true time constants obtained by the plunge test method. For thermocouples, however,

due to difficulties in performing the tests, the accuracy of the LCSR results are not

generally as good as those for RTDs. Based on the results of a comprehensive research
and development project conducted over a three-year period, as reported in Ref. (4),

the LCSR tests have been found to have an average accuracy of about ±20 percent for

typical thermocouples tested in water or air at moderate temperature and flow

conditions. It should be pointed out that accuracies of as good as 5 percent can
sometimes be achieved in LCSR results for RTDs and thermocouples using carefully

executed test procedures and by repeating the tests on the same sensor ten to twenty
times and averaging the results for better statistical accuracy.

6 • CONCLUSIONS

The Loop Current Step Response (LCSR) method has been validated and commercial

equipment has been developed for in-situ measurement of response times of installed

RTDs and thermocouples. The LCSR method accounts for the response time of the sensor

itself, the thermowell (if one is used), and process conditions such as fluid

temperature and velocity that can have an effect on response time.

The average accuracy of the LCSR method is about ± l0 percent for RTDs and about

±20 percent for thermocouples. Better LCSR accuracies can be achieved for both RTDs

and thermocouples under suitable test conditions and with carefully executed test

procedures and adequate test equipment. The LCSR method is useful in many applications

involving transient temperature measurements with RTDs or thermocouples.
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1.0 INTRODUCTION

The AMS Model ETC-3 is an integrated instrument for performing Loop Current Step

Response (LCSR) tests on thermocouples. The ETC-3 contains several desirable features for

performing thermocouple tests using the LCSR method. Built-in signal conditioning amplifiers

along with a mechanism that allows the current duration (heating time) to be manually adjusted

based on the type, size, and installation configuration of each thermocouple are attributes of the

ETC-3 dynamic thermocouple test unit.

The ETC-3 instrument includes the following components:

1. An AC power supply capable of supplying 0-60 VAC @ 5.0 amperes.

2. Analog current meter to avoid current overloading situations.

3. A set of adjustable medium and universal gain DC amplifiers.

4. Two position adjustable low-pass filter (5 Hz and 15 Hz) built into the medium
gain DC amplifier and 60 Hz notch filter built into universal gain DC amplifier.

5. Adjustable current duration relay.

The LCSR raw data will be analyzed to provide both quantitative and qualitative

information regarding the installation of the thermocouple. The analysis will be performed using

computer-based software designed at AMS and introduced in section 5.0 of this manual. Figure

1.1 shows the necessary equipment setup to perform thermocouple installation testing featuring

the AMS ETC-3 dynamic thermocouple test unit.
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2.0 THERMOCOUPLE RESPONSE TIME TEST METHODS

The LCSR test is a method for measuring the response time of thermocouples. The

advantage of this method over the traditional plunge test is that it permits in-situ testing of

installed sensors. The plunge test requires that the sensor be removed from the process to be

tested in a laboratory environment. An LCSR test on a thermocouple involves heating the sensor

with a few amperes of AC current to induce a temperature rise in the sensing junction. A few

seconds of heating generally provides a sufficient temperature rise within the thermocouple. The

current is then discontinued and the resulting cooling transient of the thermocouple is amplified

and recorded as the sensing junction returns to ambient temperature. This transient data may

be analyzed using the software package provided by AMS to obtain the installation index of the

sensor. Appendix A contains a description of the LCSR method. A detailed discussion is found

in the final AMS report to NASA under contract number NAS8-40165.

3.0 DESCRIPTION OF TEST EQUIPMENT

3.1 ETC-3 Specifications

The AMS Model ETC-3 instrument is designed for LCSR testing of all sizes of insulated

junction thermocouples. A photograph of the thermocouple installation test instrument (ETC-3)

is shown in Figure 3.1. This instrument meets the following specifications:

Maximum output power: 0.3 KVA

Maximum output AC current: 5.0 amperes @ 60 Hz.

Maximum AC voltage: 0.5 of the line voltage (60 volts @ 60 Hzo)
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Medium Amplifier Gain:
Minimum = 0.01
Maximum = 200

Universal Amplifier Gain:
Minimum = 0.2

Maximum = 100,000

Frequency Response:

Medium Gain Amplifier: Less than 3db down at 2KHz with filter off;
flat to ± .5% from dc to 100Hz with filter off.

Universal Gain Amplifier: For low frequency and high frequency settings,
amplifier output will be +15% of the indicated
frequency at 3db down with a rolloff of -6db/oct.

3.2 ETC-3 Operating Instructions

The AMS ETC-3 instrument operates from a single-phase 110 VAC power source with the

neutral conductor at earth potential. The instrument has a 3-wire power cord with a 3-terminal

polarized plug for connection to the power source and safety ground. The live conductor passes

through a 3.0 Amp. fuse provided for over-current protection. The ground terminal of the plug

is directly connected to the chassis.

The instrument is turned ON by a power switch on the rear panel (Figure 3.2). Also

included on the rear panel are a power cord socket, fuse, current duration control, output ribbon

connector, and digital multimeter hookup port.

A block diagram of the ETC-3 dynamic test instrument is shown in Figure 3.3.

function of the front panel components (Figure 3.4) are described below:

1. POWER: This LED lights when power switch is energized.

The
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. VOLTAGE ADJUSTMENT: The voltage across the thermocouple is varied by

turning the large voltage adjustment dial. This provides control for heating
current to the thermocouple.

3. HEATING CURRENT METER: This meter indicates the value of AC current

(in amperes) flowing through the thermocouple.

. MEDIUM GAIN DC AMPLIFIER AND UNIVERSAL GAIN DC AMPLIFIER:

Controls thermocouple output signal gain using the adjustment control knobs.
Charts of signal amplification versus amplifier control setting for the Medium

gain and Universal gain DC amplifiers are shown in Table 3.1 and Table 3.2,
respectively. Medium gain amplifier includes 5 Hz and 15 Hz filter settings
and universal gain amplifier includes a 60 Hz notch filter to limit high
frequency noise associated with high amplifications.

o THERMOCOUPLE REFERENCE JUNCTION: The thermocouple extension
wire is connected to the copper block underneath a protective safety door.
The negative thermocouple wire must be connected to the right-hand side
terminal. CAUTION - HIGH VOLTAGE: High voltage is supplied to the

copper blocks. To insure safety, connect the thermocouple with the main
power switch in the OFF position and/or CURRENT switch in the DOWN
position.

6. CURRENT: In the UP position, this switch allows for current to flow through
the thermocouple during the heating stage.

. OUTPUT: Selects type of output obtainable at the METER port (back panel).
Selections include resistance (OHM), AC voltage (ACV), and DC voltage

(DCV) used in heating current calculations and output display determination.

The function of the ETC-3 back panel components (Figure 3.2) are described below:

1. POWER SWITCH: ON/OFF switch that controls 110V power to ETC-3

thermocouple unit.

. METER OUTPUT: Provides AC voltage and TC resistance readings for
thermocouple current calculations. METER output is controlled via OUTPUT
selection knob on the ETC-3 front panel (OHM, ACV, and DCV).

. HEAT TIME CONTROL: Controls the current heating time (duration) of the
thermocouple in test. Heating time is a function of thermocouple type, size,
and installation environment. LO and HI settings allow heating time to be
increased from 0 to 6.0 seconds. Maximum allowable heating time is

approximately 10.0 seconds.

4. OUTPUT RIBBON CONNECTOR:

hookup.

Output terminal for control computer

5. POWER INPUT/FUSE: Input port for 110V power. Standard power cord
connector with a fuse for internal component protection.
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TABLE 3.1

MEDIUM GAIN AMPLIFIER

Dial Setting Gain (xl pos.) Gain (xl00 pos.)

5 1 0.01

2.5 2 O.O2

1 5 0.05

0,5 10 0.1

0.25 20 0.2

0.1 50 0.5

0.05 100 1

0.025 200 2

TABLE 3.2

UNIVERSAL GAIN AMPLIFIER

Dial Setting Gain (volts pos.) Gain (mv pos.)

25 0.2 200

10 0.5 500

5 1 1,000

2.5 2 2,000

1 5 5,000

0.5 10 10,000

0.25 20 20,000

0.1 50 50,000

0.05 1O0 100,000
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3.3 Control Computer

A Toshiba T3200 portable computer has been included as an accessory to the ETC-3

thermocouple test unit for thermocouple installation testing. The computer will be equipped with

the necessary AMS data acquisition and analysis software (LCSR based) for determining the

installation index of embedded thermocouples. Figure 3.5 shows a block diagram of a typical

thermocouple test set-up utilizing the ETC-3 and Toshiba portable computer.

The T3200 operates with standard operating systems, such as MS-DOS®, which enables

you to use various applications for word processing, spreadsheets, and data base management.

The T3200 incorporates the following features and benefits:

• Microprocessor:

• Disk Storage:

• Memory:

• Expansion Slot:

• Plasma Screen:

An 80286-12 microprocessor operating an IBM PC AT-compatible
BIOS ROM at 12 mHz with an 80287-8 math coprocessor.

An internal 31/2'' hard disk with 40Mb of fixed data storage and an

internal double-sided, double density, 3W' diskette drive
accommodating diskettes holding 1.44MB of information.

One mega-byte of RAM including 640KB of standard RAM and 3 to
4KB of expanded memory.

Two internal, IBM-compatible expansion slots - one full length 16

bit and one half length 8 bit.

A high resolution, gas plasma display panel, composed of 720
horizontal and 400 vertical pixels, displays 25 lines of standard text
80 characters wide.

3.4 ETC-3 Limitations

In LCSR testing of thermocouples, four effects may interfere with the measurement of the

sensor time constant. These are:
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1. Peltier Effect.

2. Magnetic Effects.

3. Resistance of extension wires.

4. High frequency electrical noise.

It is assumed that the user of this equipment is familiar with the Peltier and Magnetic

Effects.

The AMS ETC-3 instrument eliminates the Peltier effect by using AC current for

thermocouple heating. However, magnetic effects limit the use of this instrument to the following

thermocouples:

1. Thermocouples without ferromagnetic wires.

2. Thermocouples with ferromagnetic wires, but operating above their Curie
temperatures. (No magnetic effects are encountered above this temperature).

3. Thermocouples with ferromagnetic wires but a response time much greater
than the relaxation time constant of the magnetic domains. (The relaxation

time constant is typically around 50 ms).

The maximum current (I) available for heating a thermocouple with the ETC-3 test

instrument is given by:

I =Vt/Rt

where Vt is the voltage across the thermocouple, and Rt is the sum of the thermocouple and lead

wire resistances. Vt and Rt can be determined by setting the front panel selector to ACV and

OHM, respectively, and monitoring the output at the METER port on the back panel of the ETC-3.

A long extension wire limits the amount of current available for heating the thermocouple. This

may result in a very small LCSR signal which may be difficult to monitor and analyze. This

problem can be alleviated by reducing the length of the TC lead wires, using larger diameter lead
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wires, or using external signal conditioning devices (amplifier and filter) to enhance the quality

of the LCSR signal.

The LCSR signals from thermocouples are typically only a few tenths of a millivolt

depending on the type of thermocouples being tested. Therefore high amplification of the TC

signal is needed which, in turn, introduces high frequency noise in the acquired response data.

A low pass filter (included in the medium gain amp.) and 60Hz notch filter (included in the

universal gain amp.) can help over come this problem.

4.0 PERFORMING A THERMOCOUPLE TEST

4.1 Pre-Test Preparations

The following equipment is required for performing the LCSR tests:

1. AMS Model ETC-3 Thermocouple LCSR Test Instrument which includes filters and
amplifiers.

2. Digital multimeter (DMM).

3. Spare TC or thermocouple checkout panel.

4. Data acquisition equipment (Control Computer).

5. Log Book with data sheets.

The ETC-3 is capable of applying hazardous voltages to the TC being tested. These

voltages are also present on the front panel of the instrument. The user should exercise care

in connecting the TC to the ETC-3. The user should also understand that misuse of the
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equipment could partially damage the TCs being tested. Prior to plugging the unit to an AC

power source, connect the thermocouple according to the instructions in the following section.

Thermocouple connection to the instrument must be done with the main power OFF. If the

thermocouple has a male of female connector, use a mating connector and extension wires

(stranded) to connect the thermocouple to the instrument. Thermocouples with built-in extension

wires and no connector may be connected directly to the instrument. Always keep the length

of the extension wires as short as possible. Secure the thermocouple and extension wires in a

manner to minimize vibration to avoid noise on the data.

A thermocouple checkout panel has been supplied to assist in equipment checkout. The

checkout panel includes two 20 mil sheathed thermocouples arranged in an installed and

uninstalled configuration as shown in Figure 4.1 Figure 4.2 shows the proper LCSR transient

output acquired using the ETC-3 thermocouple test unit and thermocouple checkout panel.

4.2 Equipment Checkout Procedure

Prior to initial use or after extended periods of non-use, perform the functionality test

addressed in Appendix B. This section gives the step-by-step instructions for performing a

functional equipment checkout:

4.2.1

4.2.2

4.2.3

4.2.4

Set up the equipment as near as possible to the TC location. Figures 4.3 and 4.4
illustrate the equipment arrangement necessary for performing the following
checkout procedure (printer is optional).

CAUTION: Prior to connecting power to the equipment, make sure that all power
switches are OFF, and that the ETC-3 CURRENT switch is in the DOWN position.

Connect one of the checkout TCs (on the thermocouple checkout panel) to the

reference junction (copper blocks) on the front panel of the ETC-3.

Close and latch protective safety door to conceal the TC reference junction. The
ETC-3 will not operate until the safety door has been properly secured.
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Figure 4.3 Equipment Needed for Pre-Test Checkout
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Figure 4.4 Equipment Setup for Pre-Test Checkout
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4.2.5

4.2.10

4.2.11

4.2.12

4.2.15

4.2.16

4.2.19

Connect the equipment to a 110 VAC power source, turn POWER switch ON
(back panel) and allow 15 minutes warm-up time.

Connect a DMM to the output of the ETC-3 (labeled METER on back panel).

Ensure that the ETC-3 VOLTAGE ADJUSTMENT is set to 0% (full counter
clockwise).

Set OUTPUT control (front panel) to DC voltage (DCV).

Start LCSRTC thermocouple data acquisition software. Select oscilloscope (option
O) to monitor thermocouple voltage output.

Figure 4.5 shows the initial amplifier setup for the checkout panel thermocouples.
Amplifier gains will vary according to the checkout thermocouple that is being
tested. For the provided checkout panel, the installed thermocouple requires a
medium gain setting of .25 and universal gain setting of .5, while the uninstalled
thermocouple requires gains of .5 and 1.0 for the medium and universal gain DC
amplifiers, respectively. More gain is required for the installed checkout

thermocouple because of its ability to dissipate energy (into host material) much
more rapidly than the uninstalled (bare) thermocouple.

Set Heating Time control (back panel) to desired amount for check-out TC
(approximately 2 seconds).

Adjust amplifier gain, offset, and filter settings, as necessary, to obtain a correctly
scaled transient for the data acquisition software (approximately 9.0 DC volts out).

Set the CURRENT switch on the ETC-3 to the UP position.

Set the CURRENT switch to the DOWN position after the TC heating is complete.
Wait for the TC to return to ambient temperature.

Incrementally increase the VOLTAGE ADJUSTMENT to achieve a full-scale
thermocouple transient. Observe the heating current ammeter on the ETC-3 front
panel to avoid excessive current levels.

Re-adjust amplifier gain and offset (if needed) to obtain a correctly scaled transient
for the data acquisition software.

Repeat 4.2.13 to 4.2.16 as necessary to obtain a properly scaled transient.

Choose Option 2 of the LCSRTC acquisition software to acquire thermocouple
output data. Set acquisition parameters for proper AT and number of samples (40
msec and 1500 points, respectively for checkout panel TCs).

Set the CURRENT switch to the UP position. Press [Enter] to begin sampling
data. Current will be applied for desired duration as determined in step 4.2.11.
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4.2.20 Observe the complete cooling transient on the computer screen. Set the
CURRENT switch to the DOWN position after acquisition is complete.

4.2.21 View the complete TC transient data (Option 4) and save the data (Option 3) to
a data file.

4.2.22 Repeat 4.2.19 to 4.2.21 as necessary to obtain a properly scaled transient. Some
re-adjustment in amplifier gain may be necessary as checkout proceeds.

4.2.23 Ensure that the CURRENT switch is in the DOWN position.

4.2.24 Turn the VOLTAGE ADJUSTMENT to 0% (full counter clockwise).

4.2.25 Disconnect the checkout TC from the ETC-3.

Acceptance Criteria

The output obtained at step 4.2.20 must be a reasonably clean (free of excessive high

and low frequency noise) exponential transient.

4.3 Thermocouple LCSR Test Procedure

The purpose of this procedure is to give detailed instructions for in-situ response time

testing of thermocouples (TCs) using the LCSR method. In-situ testing allows the installed

sensor to be tested remotely while it is exposed to normal operating conditions and without

interference to the process operation. This procedure is based on using the AMS model ETC-3

thermocouple test instrument along with a data acquisition control computer. The user of this

procedure is assumed to be familiar with LCSR methods.

The LCSR test must be performed at steady state conditions. That is, the process

temperature, must be as constant as possible during the LCSR test. The inherent random

fluctuations of these parameters may be tolerated but should be minimized by:
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1. Using sufficient heating current in the LCSR test to improve the signal to noise ratio.

2. Using sufficient heating time to obtain proper signal to noise ratio.

3. Taking more than one data set on each sensor, then using an averaging technique
to smooth the data. Depending on the amount and magnitude of the fluctuations,
from 5 to 10 data sets are usually sufficient for this averaging.

The following is the complete thermocouple LCSR test procedure:

4.3.1 Perform the pre-testing procedure and equipment checkout procedure outlined
in the above sections. Do not connect a TC to the ETC-3 unless the procedure

in Section 4.2 is satisfactorily completed and the acceptance criteria are met.
Proper operation of the ETC-3 must be assured before any connection to a TC is
made.

4.3.2 Ensure that the ETC-3 VOLTAGE ADJUSTMENT is set to 0% (Full

counterclockwise) and that the CURRENT switch is set to the DOWN position.

4.3.3 Connect the TC to be tested to the reference junction on the front panel of the
ETC-3.

4.3.4 Close and latch the protective safety door to conceal the TC reference junction.
The ETC-3 will not operate until the safety door has been properly secured.

4.3.5 Set OUTPUT knob (front panel) to OHM position. Measure the thermocouple loop
resistance (at METER port on back panel) and record the value on the attached
data sheet along with the other information requested in data sheet.

4.3.6 Set OUTPUT knob (front panel) to DCV.

4.3.7 Start LCSRTC thermocouple data acquisition software. Select oscilloscope (option
O) to monitor thermocouple voltage output.

4.3.8 Adjust medium and universal amplifier gain, off-set and filter as necessary to
obtain a correctly scaled signal for the data acquisition software (approximately
9.0 volts (DC) out). The type and installation of the TCs will determine the amount
of amplifier gain that is necessary to achieve a proper TC signal.

4.3.9 Set the desired heating time using the HEAT TIME control on back panel.

4.3.10 Set the CURRENT switch on the ETC-3 to the UP position.

4.3.11 Set the CURRENT switch to the DOWN position after the TC heating is complete.
Wait for the TC to return to ambient temperature.

4.3.12 Incrementally increase the VOLTAGE ADJUSTMENT to achieve a full-scale
thermocouple transient. Observe the heating current ammeter on the ETC-3 front
panel to avoid excessive current levels.
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4.3.13

4.3.14

4.3.15

4.3.16

4.3.17

4.3.18

4.3.19

4.3.20

4.3.21

4.3.22

4.3.23

4.3.24

4.3.25

4.3.26

4.3.27

Re-adjust amplifier gain and offset (if needed) to obtain a correctly scaled transient
for the data acquisition software.

Repeat 4.3.10 to 4.3.13 as necessary to obtain a properly scaled transient.

Record appropriate data on the attached data sheet.

Escape [ESC] from oscilloscope mode of LCSRTC software and choose software
option 2 to acquire thermocouple output data. Set the acquisition parameters for
proper AT, number of samples, and file storage location.

Set the CURRENT switch to the UP position. Press [Enter] to begin data
acquisition using LCSRTC. Wait for the desired heating time (set in step 4.3.9).

Ensure that the data acquisition equipment is recording the TC cooling transient.
Set the CURRENT switch to the DOWN position after acquisition is completed.

View the data using Options menu selection 4.

Save the data (if acceptable) using Options menu selection 5.

Repeat 4.2.17 and 4.2.20 as necessary to obtain the desired number of LCSR
transients. Allow the thermocouple to properly cool to ambient temperature before
initiating each sampling iteration. Slight adjustments in the current of the TC
signal gain may be necessary as each testing iteration proceeds.

Stop the data acquisition equipment.

Record appropriate data on the attached data sheet and sign the data sheet.

Turn the VOLTAGE ADJUSTMENT to 0% (full counterclockwise).

Ensure that the CURRENT switch is in the DOWN position.

If desired, the data can be processed and averaged by selecting software
option 6.

Disconnect the TC from the ETC-3.

Acceptance Criteria

The output obtained at step 4.3.18 must be reasonably clean (free of excessive high and

low frequency noise) exponential transient.

4.3.28 Repeat 4.3.2 to 4.3.27 for each TC to be tested.
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THERMOCOUPLE LCSR DATA SHEET

Date

Plant

Time

Sensor ID

Model #

Type: _ E

Wire Length

Junction Type:

Manufacturer

J K T

Exposed
Junction

Junction)

Thermocouple Loop Resistance

Wire Diameter (Gage)

Sheathed

(Insulated

Other

Sheathed
(Grounded

Junction)

(Ohms)

Installation Remarks:

Process Flow

Conditions: Temperature

Service

Remarks

Test Conditions:

Heating Current

Output Voltage

Filter Setting(s)

Amplifier Gain(s)

(Amps) Heating Time

(Volts)

(Sec)

Data Recording:

Disk ID

Delta T

Remarks:

File Names:

Number of Samples

To

Signature
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4.4 Analysis of Thermocouple Data

The analysis of acquired thermocouple transient data using AMS-designed software,

LCSRTC10, provides the user with a quantitative installation value (installation index), as well as

a qualitative visual comparison for complete thermocouple attachment determination. Multiple

TC transient data files can be loaded and simultaneously viewed, on-screen, for a complete

qualitative comparison. Figure 4.2 shows a qualitative comparison of TC transient data for the

checkout panel thermocouples. A distinct difference can be observed in the data for an installed

and uninstalled thermocouple as the installed thermocouple has a more rapid response. A

numerical value called an installation index is also provided to the user for a quantitative

comparison of thermocouple installation quality. An increasing installation index value is

indicative of an increase in the degree of TC installation degradation (poorer installation) and a

slower response time.
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5. THERMOCOUPLE TEST SOFTWARE

Thermocouple test data acquisition and analysis is performed by AMS software

LCSRTC10 in association with the ETC-3 and Toshiba T3200 control computer. LCSRTC10 is

a DOS-based program that provides data processing, display, and analysis capabilities. The

software provides a qualitative display as well as a quantitative value (installation index) enabling

researchers to make important determinations with regard to sensor installation.

5.1 Program Installation

The thermocouple software can be installed on the control computer by manually copying

the files from the installation disk to the hard drive.

Manual Installation:

1. Power up the control computer with the installation disk NOT inserted in the floppy
drive.

. The program is pre-installed on the system provided. If the software needs to be
reinstalled for any reason, type from the DOS prompt "A:install". This will create a
directory call "LCSRTC" on the C: drive and copy the software into this directory. If
the software is being installed on a computer other than the one provided be sure
the computer has a 286 or better processor and a math coprocessor. If the
thermocouple software has been properly installed, the control program can be
started simply by typing C:\LCSRTC\LCSRTC.

5.2 General Operation

The LCSRTCIO software utilizes a menu-driven interface that provides data acquisition,

data analysis, and data visualization functions. Menus can be initiated or halted by using [Enter]

or [Esc], respectively.
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5.3 Options Menu

The Options menu is the main menu of the LCSRTC software. Each program function is

accessed through the options menu. There are nine Options menu items with each having

additional sub-menus: Oscilloscope, Erase Data File, Acquire Data, Store Data on Disk, Plot Data

to Screen, DOS Shell, Process Data, A/D Test, and Exit.

5.3.1 0 - Oscilloscope

This sub-menu initiates the oscilloscope screen that is used for initial acquisition

parameter and equipment setup. The oscilloscope mode monitors thermocouple
DC output voltages.

5.3.2 1 - Erase Data File

This sub-menu prompts the user for a file name (AAAO000) to be erased from the
current working directory. To replace a previously created data file, the old file
must first be erased. "Z" [Enter] will return the user to the Options menu.

5.3.3 2 - Acquire Data

This option allows the user to acquire data associated with the transient output
of a thermocouple. Current sampling information (Actual Delta T, Number of
Points Sampled, and Total Sampling Time) and data directory information are
automatically displayed. Additional options are available within the Acquire Data
menu and include the following:

1. To Begin Sampling - Initiate acquisition of thermocouple transient output
data and create the appropriate data file (.DAT).

2. To Change Parameters - Allows sampling parameters to be adjusted
according to various thermocouple installation configuration and
environmental factors.

3. To Return to Menu - Return the user to the Options menu.

5.3.4 3 - Store Data on Disk

After successfully acquiring an LCSR transient, the data may be saved to disk with

this option. The filename should be three letters followed by four numbers, for
example "NASO001 ." If files are numbered sequentially in this manner they may
be more easily grouped when the data is being processed.
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5.3.5 4 - Plot Data to Screen

Using this option, the user can review previously acquired data.

5.3.6 5 - DOS Shell

This allows the user to execute system commands without exiting the software.

Typing "exit" will return the user to the Options menu.

5.3.7 6- Process Data

After data has been acquired and saved, it may be analyzed, compared to other
data, and printed using this option. There are two file selection options available
to the user: 1) selection according to a sequentially ordered range of filenames,
or 2) independent filename selection. Once the filenames are properly selected,
these processing options are presented:

1. Create 'q"ext Files - Text files are intended to provide a means of

representing the data via spreadsheet analysis.

2. Create "A"veraged Files - Multiple files may be averaged to reduce the
effect of noise and promote repeatability in thermocouple testing.

. "G"raph Files - The graph option allows for visual inspection of
thermocouple transient output and allows the user to overlay multiple data
files.

There are also options to "C"ontinue processing additional files or "R"eturn to the

Options menu. The processing option automatically normalizes the transient so
that the data starts at 0 and ends at 90% of the maximum value. If the data was

acquired using different sampling frequencies, the averaging routine will
interpolate the data with the lower frequency and store the results at the highest
frequency of the data runs being averaged. The printing option allows printing to
an HP Laser Jet, Diconix 300 and 180si printer, or other compatible printer.

5.3.8 7 - ND Test

This option is used to verify the calibration (see Procedure ETC9601RO) of the
analog to digital converter (A/D) using a continuous display of the raw A/D output
in counts. The A/D is configured by AMS in a 0-10 volts range before shipment.
The A/D is 12-bit, so the output will be 0-4095 for a 0-10 volt signal.

5.3.9 8- Exit

Exit the program.
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6. ETC-3 FUNCTIONALITY CHECK

In order to insure the ETC-3 test equipment is correctly functioning, a functionality check

should be performed prior to initial use or after periods of limited operation. This check should

be performed annually. The ETC-3 functionality check should be performed in accordance with

Appendix B of this manual.
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7. QUALITY ASSURANCE

All equipment manufactured by AMS is constructed under the AMS Quality Assurance

Program. Each piece of equipment is thoroughly checked for proper operation of the hardware

and software. This involves, but is not limited to, checking for proper operation of the ETC-3

Dynamic Thermocouple Test Unit components.

A functionality report is filed at AMS for each unit prior to shipment. This instrument

should undergo the functionality checkout described in Section 6 at least once every year either

by the customer or by AMS.

-B32-



APPENDIX A

Description of LCSR Test

-B33-



APPENDIX A

Description of LCSR Test

This appendix provides a short description of the LCSR method for the testing of

thermocouples.
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LCSR TESTING OF THERMOCOUPLES

LCSR testing of thermocouples is based on internal heating of the thermocouple by

applying an electrical current to its extension leads. The current is applied for a few seconds and

then turned off. This heats the thermocouple junction several degrees above its ambient

temperature. When the current is stopped, the thermocouple output is monitored as the junction

cools to the ambient temperature. The rate of this cooling depends on the response time of the

thermocouple and how well the thermocouple is attached to the material whose temperature is

being monitored. For thermocouples that are attached to or embedded in a solid material, the

LCSR cooling rate is dominated by the bonding between the thermocouple and the solid

material.

An AC power supply is used to heat the thermocouple with a current of 1 to 3 amperes

depending on the resistance of the thermocouple circuit. The heating current is applied for 5 to

15 seconds depending on the conditions in which the thermocouple is tested. Following this

heating period, the AC current is switched off and the thermocouple output is recorded

immediately after the cessation of the heating current. The output is recorded until it reaches

steady state indicating that the thermocouple junction has returned to the ambient temperature.

The thermocouple cooling transient is then analyzed to obtain the dynamic response of the

thermocouple under the installation conditions tested. The following publications may be

consulted for more details:

Hashemian, H.M., "Determination of Installed Thermocouple Response." U.S. Air
Force, Arnold Engineering Development Center, Report Number AEDC-TR-86-46,

(December 1986).

Hashemian, H.M., "New Technology for Remote Testing of Response Time of

Installed Thermocouples." United States Air Force, Arnold Engineering
Development Center, Report Number AEDC-TR-91-26, Volume 1 - Background
and General Details, (January 1992).
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Hashemian, H.M., et al., "Improved Temperature Measurement in Composite
Material for Aerospace Applications." National Aeronautics and Space
Administration, Marshall Space Flight Center, Contract Number NA58-39814,

MSFC, AL, (July 1993).

Hashemian, H.M., and Petersen, K.M., "Loop Current Step Response Method For
In-Place Measurement of Response Time of Installed RTDs and Thermocouples."

Published by American Institute of Physics, Seventh International Symposium un
Temperature, Volume Six, pp. 1151-1156, Toronto, Canada, (May 1992).

Hashemian, H.M., et al., "ln-Situ Response Time Testin.q of Thermocouples." ISA
Transactions, Volume 29, Number 4, pp. 97-104, (1990).

Hashemian, H.M., Petersen, K.M., "ln-Situ Test Gauge Thermocouple Performance,

Part 1." Intech, Vol. 40, No. 1, pp. 30, (January 1993).

Hashemian, H.M., Petersen, K.M., "ln-Situ Test Gauge Thermocouple Performance,

Part 2." Intech, Vol. 40, No. 6, pp. 31, (June 1993).
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APPENDIX B

ETC-3 Functionality Procedure

The following procedure details the necessary steps for performing a functionality

check of the ETC-3 Dynamic Test unit and accessories.
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1. INTRODUCTION

This procedure contains the steps necessary to perform a functionality check of the AMS

model ETC-3 thermocouple test instrument. The functionality check is to be performed, at a

minimum, on an annual basis by properly trained and qualified personnel. Personnel performing

this procedure shall be familiar with the operation of the ETC-3. In addition any repair or

replacement of parts also necessitates a check of the functionality of the ETC-3.

WARNING: WHILE PERFORMING THE FUNCTIONAL CHECK PROCEDURE THE VOLTAGE

OUTPUT KNOB (LOCATED ON THE ETC-3 FRONT PANEL) SHOULD BE IN THE FULLY
COUNTER CLOCKWISE POSITION, THE REFERENCE JUNCTION DOOR OPEN AND THE
CURRENT SWITCH IN THE DOWN POSITION. SEE AMS MANUAL # NAS9601R0 FOR
DIAGRAMS OF COMPONENT LOCATIONS.

ETC9601 R0
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2. EQUIPMENT REQUIRED

The following equipment is necessary to perform a functionality check of the ETC-3.

1. Two calibrated DMMs. The calibration should be current and traceable to NIST.

2. D.C. power supply.

3. FUNCTIONALITY TEST

3.1 ETC-3 Amplifier Adjustment

The ETC-3 amplifier adjustment involves applying a short to the input (reference junction)

of the equipment and adjusting the amplifier balance to null any offset that may have occurred.

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

Apply a short to the thermocouple input (reference junction) on the front of the
ETC-3.

Turn equipment on and allow to warm up for 5 minutes.

Configure the amplifiers per Figure 3.1.

Connect a one calibrated DMM to the meter jack on the rear of the ETC-3.

Place the output selector knob (on the front of the ETC-3) in the DC position.

Push the Zero-Push knob on the universal amplifier to the LOCKED-IN position.

Adjust the balance (mv bal) on the universal amplifier to obtain an output voltage
as close as possible to zero.

ETC9601 RO
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3.2

3.1.8 Push the Zero-Push knob on the universal amplifier to the OUT Position.

3.1.9 Adjust the balance (bal) on the medium gain amplifier to obtain an output voltage
as close as possible to zero.

3.1.1 0 Disconnect the short from the thermocouple input (reference junction).

3.1.11 Connect a power supply to the thermocouple input (reference junction) and the
second DMM.

NOTE: The polarity must be reversed when connecting to the reference junction
(eg. power supply volt (+) to reference junction (-)).

3.1.12 Adjust the power supply to approximately 1.00 VDC.

3.1.13 Adjust the calibrate knob on the front of the Universal amplifier until the voltmeter
connected to the meter jack (rear of ETC-3) is matched to the voltage from the
power supply. Lock the knob in place.

System Voltage Check

The system voltage check involves the comparison of the input voltage, which is

measured using a calibrated DMM, with the indicated counts from the A/D. This is used to verify

that the voltages applied to the system are properly acquired by the A/D.

ETC9601 RO

The amplifiers should be adjusted as outlined in 3.1 above.

Connect a variable DC power supply to the thermocouple input (reference
junction).

Execute LCSRTC on the control computer. Enter option number 8 (A/D Test).

Apply known voltages of 2,5,8 VDC.

NOTE: The polarity must be reversed when connecting to the reference junction
(eg. power supply volt (+) to reference junction (-)).

Record the measured voltage.

Record the actual measured number of counts (voltage) indicated by the
computer (A/D) for the applied voltage. A sample data sheet is provided following
the A/D voltage check section.
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3.2.7 Compute the theoretical number of counts from the measured voltage using the

following equation.

Output = (4095)(counts) __ [ Measured Voltage]

3.2.8

3.2.9

Compute the difference between actual A/D counts and the theoretical number of
counts.

Difference = [Actual Measured] - [Theoretical Value]

Repeat steps 3.2.4 through 3.2.8 for each applied voltage.

Acceptance Criteria: The absolute difference between the actual A/D and
theoretical number of counts must be less than or equal to 10 counts at each

measured voltage. If the acceptance criteria is not met, refer to the
manufacturers calibration procedure for adjusting the amplifiers and/or A/D.

ETC9601 RO
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SYSTEM VOLTAGE CHECK DATA SHEET

Model # ETG-_ Serial # 960155101

Voltmeter

Measured Input
Voltage (volts)

Theoretical

Output (counts)

Measured A/D

Output (counts)

Difference

(counts)

Signature Date

ETC9601 RO
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APPENDIX C

SMALL DIAMETER THERMOCOUPLES MANUFACTURED BY
DELTA M CORPORATION





Small Diameter Thermocouples Manufactured

by Delta M Corporation

A majority of the thermocouples used in the Solid Propulsion Integrity Program (SPIP) are small

diameter, sheathed, insulated junction thermocouples (type "K") manufactured by Delta M Corporation

(Figures C. 1 and C.2). These thermocouples were selected for the SPIP to provide researchers with a

small, fast response temperature gage to record measurements inside test specimens of composite material

during sharp thermal transients. In addition, the sheathed thermocouple design provides certain

advantages over the unsheathed types, such as elimination of secondary junctions caused by thermocouple

leads that touch. This appendix provides the results of a study performed to understand some of the

techniques used in the manufacture of these thermocouples in preparation for Loop Current Step Response

(LCSR) field tests at Southern Research Institute (SRI) and Marshall Space Flight Center (MSFC). This

information was obtained during a site visit to the Delta M manufacturing facilities in Oak Ridge

Tennessee.

1. Failure Mechanisms in Small Diameter Thermocouples

Many of the production techniques used in the manufacture of Delta M thermocouples were

developed in the early 1980's during tests performed in large, out-of-reactor, thermal-hydraulic test

facilities at the Oak Ridge National Laboratory (ORNL), and later at the Delta M manufacturing facilities.

The need for small, reliable thermocouples (type "K"), capable of measuring high temperatures during

sharp thermal transients necessitated many advancements in existing thermocouple manufacturing

techniques. Use of existing thermocouples at the ORNL facilities had resulted in premature failure of

a large percentage of the thermocouples (up to 100%) during exposure to high steady-state temperatures

and thermal cycling. An investigation indicated four main mechanisms for the failures (1).

1. Thermoelement Grain Size

2. Differential Thermal Expansion

3. Oxidation

4. Residual Cold Work in the Thermoelements

Each of these mechanisms are described below:
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FigureC.1 Photographof SmallDiameterThermocouplesUsedin TheSolidPropulsionIntegrity
Program(SPIP).
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Figure C.2 Diagram of Small Diameter Delta M Thermocouple (HTT3-U-010-I600-10"-K-

MgO-K). Reproduced From Delta M Drawing ELS-500. All dimensions are in inches.
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Thermoelement Grain Size

In general, small diameter insulated junction thermocouples are manufactured using a recursive

drawing-annealing procedure. The thermocouple elements are assembled in a sheath, with the

insulation material (usually magnesium oxide) packed around the elements. The assembly is then

pulled (drawn) through a series of progressively smaller dies in order to reduce the overall diameter

of the thermocouple. As the assembly is drawn, the diameters of the thermoelements within the sheath

are also reduced. In the case of the 0.3mm thermocouples shown in Figure C. 1, the thermoelement

diameters are reduced to approximately 0.03mm. When the microstructures of the components are

examined, the diameter of the thermoelements can consist of a single grain (essentially a single crystal),

and in some cases result in grain boundaries extending the full diameter of a thermoelement (Figure

C.3). At high temperatures, grain boundaries create an area within the thermoelement that is

significantly weaker than the grains themselves, and result in "weak links" in the structure of the

thermoelement. Any stress induced in the thermocouple (such as that caused by vibration, thermal

expansion, or shock) may cause the thermocouple to fail.

Differential Thermal Expansion

Differential thermal expansion can occur in thermocouples during exposure to high temperature. Since

each component of a thermocouple (sheath, thermoelements and insulation) have their own linear

expansion coefficient (_), significant stresses can be induced within the thermocouple under certain

conditions. Figure C.4 illustrates the relation between linear expansion and temperature for

components used in the construction of a type "K" thermocouple. The linear expansion coefficients

for type "S" thermoelements are also shown. Two different sheath materials are illustrated: Inconel

600 TM and 304 stainless steel. As seen in this figure, there is a significant (0.2 to 0.3%) difference

between the thermal expansion coefficients of the stainless steel and the Inconel 600 TM (in addition to

the Chromel and Alumel) at about 1000°C. If a thermocouple is constructed of materials with large

differences in linear expansion coefficients, relatively large amounts of stress can be induced in the

thermoelements at high temperatures since each component will expand differently. To illustrate these

effects, the following example is given based on approximated values for linear expansion coefficients

for a type "K" thermocouple_2):

Initial Temperature: 25 °C

Final Temperature: 300°C

Initial Thermocouple Length: 25cm

Average Thermal Expansion Coefficients (C'):

Stainless Steel 19.1 E- 6

Alumel 13.0 E-6

Chromel 16.2 E-6

L= _ Lo(t,-O (C.1)
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where L

Lo

tl
t_

is the change in length of the component

is the linear expansion coefficient

is the initial length of the component

is the final temperature

is the initial temperature

For this case the change in length for each component of the thermocouple is:

L..,, _ = 0.13cm

L,_., = 0.09cm

L__, = 0.1 lcm

As seen in this example, the stainless steel sheath will expand the most, resulting in stretching of the

Chromel and Alumel thermoelements. However, if the Inconel 600" is used as a sheath material, the

stresses within the thermoelement will be reduced since the linear expansion closely approximates that

of both the Chromel and Alumel thermoelements.

Oxidation

A third factor discovered in the examination of failures of small diameter thermocouples was the

presence of oxidation in the type "K" thermoelements. If the amount of oxygen and moisture in the

thermocouple is high, oxides can form in both the Chromel and Alumel dements, resulting in

embrittlement and early failure. This effect becomes aggravated when the thermocouples are

operated in the 815 to 1038°C range _3_. To prevent this from occurring, there must be a minimum

of oxygen, moisture, and hydroxides or oxides in the thermocouple insulation.

Residual Cold Work In Thermocouples

After manufacture, a small amount of cold work or pre-strain can remain in the thermoelements of type

"K" thermocouples. The effects of this cold work are two-fold:

The cold work will change the value of the Seebeck coefficient of the thermoelements

and therefore cause the thermocouple to deviate from standard thermocouple calibration
curves. If the thermoelements are heated to a temperature above the recrystallization

temperature, the thermocouple will be annealed, relieving the cold work and further

changing the Seebeck coefficient.

Exposure of the thermocouple to temperatures above the recrystallization temperature
will cause relatively large increases in the grain size. This can result in grain boundaries

extending the full diameter of a thermoelement and therefore create areas within the
microstructure where fracture of the thermoelements can occur.
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In order to manufacturea thermocouplewith the optimum materialproperties,and a

microstructurefreeof coldworkoroxidation,adetailedfabricationprocesswasdeveloped.Thisprocess

isdescribedin thefollowingsection.

2. Manufacturing Practices for Delta M Thermocouples

Many of the details concerning the manufacture of Delta M thermocouples are proprietary in

nature, but the following outline provides a general description of the steps used in manufacture of the

type "K" design. A block diagram of the process is shown in Figure C.5.

.

.

.

.

.

.

Sheath material (Inconel 600 TM tubing) is obtained and magnesium oxide insulation material is

inserted into the tubing. Thermocouple leads are then installed into the insulation, taking

precautions not to contaminate the thermoelements.

The tip of the tubing is then swaged in order to compress the first 3 to 5 cm. of the sheath,

forming a tapered tip. Swaging is a procedure which is often used to reduce the cross-sectional

area of rods and tubing and is performed by rotating a series of hammers around the material

at high speed (Figure C.6). This compacts the magnesium oxide insulation material within the

sheath and allows drawing of the assembly through a die as described in the next step.

The swaged portion of the sheath is drawn through a die, reducing the overall O.D. of the

thermocouple sheath and thermoelements by approximately 10%. This process induces a

moderate amount of cold work in all components of the thermocouple.

To relieve the cold work in the thermocouple materials and permit further drawing, a recovery-

anneal process is performed on the thermocouple. The temperature and duration of the

annealing process have been perfected over several years to insure that microstructure grain

size refinement takes place. The optimum final condition is a microstructure with small grain

size and free of impurities. An illustration of the changes which occur in the materials during

the drawing-annealing process are shown in Figure C.7.

The procedure of swaging, drawing and annealing is repeated until a thermocouple sheath with

the desired outside diameter is obtained.

A small amount of magnesium oxide insulation material (equal to about one or two diameters)

is removed from the tip of the thermocouple to gain access to the enclosed thermocouple
leads.
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Obtain Thermocouple Componentsand Assemble into Sheath
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Figure C.5 Manufacturing Processes Used in Construction of Delta M

Thermocouples
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. The thermocouple is welded under a microscope, and magnesium oxide insulation is re-packed

around the thermocouple.

. The thermocouple is heated to remove any moisture which penetrated the internals of the

thermocouple during manufacture.

. A cap is welded to the tip and then swaged to ensure the welded portion of the thermocouple is

the same diameter as the remaining portion of the sheath.

10. The thermocouple leads are then assembled in a transition piece to allow easy use of the

thermocouple.

The entire assembly process is shown schematically in Figure C.8.

References:

. McCulloch, R.W.; Clift, J.H, "Lifetime Improvement of Small-diameter Sheathed

Thermocouples for Use in High-temperature and Thermal Transient Operations," American

Institute of Physics, 1982.

. Anderson, R.L.; Ludwig, R.L., "Failure of Sheathed Thermocouples Due to Thermal

Cycling," American Institute of Physics, 1982

. Spooner, N.F. and Thomas, J.M., "Longer Life for Chromel-Aiumel Thermocouples," Met.

Prog. (November 1955).
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Figure C.8 Schematic Diagram of the Manufacturing Processes For Delta M Thermocouples.
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PREFACE

AMS is conducting a comprehensive research project for NASA Marshall Space Flight

Center (MSFC) to develop equipment and techniques for testing the installation integrity of

thermocouples, strain gages, and other sensors installed on solid surfaces or embedded in solid

materials. As a part of this project, AMS has conducted tests on thermocouples that are

assembled by Hercules for MSFC. This report summarizes the results of the AMS tests for

Hercules.
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1. INTRODUCTION

Analysis and Measurement Services Corporation (AMS) performed thermocouple

installation testing on the Solid Propulsion Integrity Program (SPIP) 94 Analog Test Matrix carbon-

phenolic specimens. A total of forty-two specimens were tested at the AMS laboratories during

an eight month period from March 1994 through October 1994. Each specimen contained one

to six embedded thermocouples. In addition, two evaluation blocks were tested. The evaluation

blocks were used to determine the optimal placement of the thermocouples in a test matrix. The

thermocouples were installed in the test specimens in either a probe or a Cured-In-Place (CIP)

configuration. After completion of installation integrity testing at AMS, thirty-eight of the

specimens were shipped to the Southern Research Institute (SRI) in Birmingham, Alabama for

additional testing on the Nozzle Ablative Simulation (NAS) Apparatus and the remaining six

specimens were shipped to Marshall Space Flight Center (MSFC) for further testing in the Plasma

Arc Facility.

The purpose of the testing at AMS was to provide Loop Current Step Response (LCSR)

results to assist in the evaluation of the analog temperature transient data taken during the

testing of Solid Rocket Motor (SRM) nozzle material at SRI and Marshall Space Flight Center.

The LCSR tests concentrated on evaluating the differences in the dynamic response

characteristics of each thermocouple as installed in the carbon-phenolic test specimens prior to

the ablative testing. In addition, the LCSR data provides useful information for evaluating the two

different installation arrangements used. It has been shown in laboratory tests performed at

AMS that inadequate or poorly installed thermocouples can be detected by comparing the LCSR

responses. A poor installation will result in a slower response time due to differences in the heat

transfer properties of the area immediately surrounding the thermocouple.
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2. BACKGROUND

The accuracy of transient temperature measurements with thermocouples is highly

dependent on the response time of the thermocouples in the specific media (water, air, solids,

etc.) in which they are installed. It has been shown that the response characteristics of

thermocouples that are installed in solid materials, such as those used in the SPIP Test Matrix,

depend strongly on the bonding between the thermocouple and the solid material. As

documented in several papers and in the report of a recent research project performed by AMS

for NASA iI,z3/, the LCSR test method can be used to evaluate the installation of thermocouples

embedded in solid materials.

The LCSR test involves applying an electrical current to the thermocouple leads. This

current results in Joule heating of the measuring junction, bringing it to an elevated temperature,

several degrees above the ambient temperature. The heating current is then terminated, and the

output from the thermocouple is monitored as it cools back to the ambient temperature. This

cooling transient contains inherent information about the dynamic response characteristics of the

thermocouple in the particular environment in which it is installed. The LCSR transients in this

report are shown in terms of the averaged LCSR transient for each thermocouple. Note that the

LCSR tests for each thermocouple were repeated several times as necessary to compensate for

temperature fluctuations and noise that are usually encountered due to high amplifier gains that

must be used. The individual LCSR transients were then averaged together for each

thermocouple to provide a smooth LCSR data set to facilitate the analysis. The transients shown

in this report have been normalized so that the they can be easily intercompared.

-D5-



3. RESULTS

From March 1994 through October 1994, AMS performed a series of LCSR tests on

forty-four instrumented test specimens. Table 1 lists all the thermocouples tested and the

installation integrity test results. The results are expressed in terms of a transient delay which

are referred to in this project as the installation index. The installation index corresponds to the

quality of a thermocouple attachment as opposed to an in-situ response time. As shown in

Table 1, several thermocouples were not testable because they were "open" when they arrived

at AMS. Each specimen contained between one to six 0.010" diameter type-K thermocouples,

manufactured by Delta M Corporation of Oak Ridge, Tennessee, for a total of 204 sensors.

Figures 1A through 1D are drawings of the test matrices for all of the specimens tested. This test

matrix shows two different installation methods for the thermocouples tested. In the first method,

the thermocouples were inserted into a 0.365" - 0.375" diameter, machined, cylindrical plug.

These plugs were then installed into a corresponding hole bored into the test material specimen

block. This is referred to as a probe type installation (Figure 2). In the second type of

installation, the thermocouples were Cured-In-Place (CIP) in the test material specimen block.

A drawing of a typical CIP installation is shown in Figure 3.

3.1 LCSR Results

The LCSR installation index results found in Table 1 were calculated by applying three

independent algorithms to the LCSR data. The results from these three methods were then

averaged to determine a final installation index. The thermocouple results were then grouped

according to the installation type and a statistical analysis was applied to each group of LCSR

installation integrity indices to flag any significant outliers. Figures 4 and 5 show histograms
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Item ]'

1

2

3

4

5

6

*7

Tag #

1

Block Installation Type I instaliation Index (sec)

CIP

CIP

2 3 CIP

3 4 ClP

83 4 CIP

51 5 CIP

53 5 CIP

8 55

9 56

10 57

11 58

12

13

14

15

16

17

18

19

20

21

17

59

20

60

79

202

5

6

6

6

7

7

8

8

9

9

CIP

0.99

0.99

1.02

0.86

0.96

0.85

N/A

0.75

ClP 0.73

CIP 1.O6

CIP 0.95

PLUG 0.46

CIP 0.90

PLUG 0.37

CIP 0.85

CIP 0.68

PLUG

78 10 CIP

201 10 PLUG

22

76

23

24

11

11

12

205

82

12

14

14

14

14

14

14

15

15

15

15

2O3

21

25 84

26 85

27 146

28 147

29 150

30 5

31 16

8O

148

149 15

179 15

144 16

145 16

178 16

242

32

33

34

35

36

37

38

39

4O 243

16

CIP

PLUG

CIP

PLUG

ClP

0.82

0.61

0.40

0.68

0.40

1.32

0.55

1.13

CIP 0.93

CIP 0.97

PLUG 0.64

PLUG 0.50

PLUG 0.43

16

ClP

CIP

1.29

1.22

CIP 1.O3

PLUG 0.75

PLUG

PLUG

PLUG

PLUG

PLUG

CIP

CIP

0.46

0.75

0.44

0.56

1.22

1.39

1.39

Open Circuit --DT-- CONTINUED ON THE NEXT PAGE



41

42

43

244 16

22 17

23

44 24

45 225

46

* 47

48

49

50

51

52

53

54

55

56

57

226

6O

228

156

196

17

17

CIP 1.38

PLUG 0.34

0.43PLUG

17 PLUG 0.38

17 CIP 0.99

CIP 1.30

17

18

18

197 18

231 18

234 18

235 18

25 19

164 19

165

221

198

19

19

58 223 19

59 227 19

20

199 2O61

62 200

63 237

64

65

66

67

68

69

70

71

72

73

* 74

75

* 76

2O

2O

CIP

PLUG

PLUG

N/A

0.86

1,00

PLUG 1.12

CIP 1.24

CIP 1.03

CIP 1.38

PLUG

PLUG

0.37

0.76

PLUG 0,75

CIP 0.93

CIP 0.84

CIP 1.03

PLUG

* 77

78

PLUG

PLUG

CIP

0.41

0.56

0.57

1.40

239 20 CIP 0.80

240 20 CIP 0.86

21 PLUG 0.39157

158 21

160 21

2O4

229

230

212

217

224

209

210

PLUG

PLUG

CIP

CIP

21

21

21

24

24

CIP

CIP

CIP

0.40

211

0.38

1.03

1.25

99

0.87

1,37

1,11

24 CIP N/A

25 CIP 1,48

CIP N/A25

25 CIP

CtP26

N/A

0,83

CONTINUED ON THE NEXT PAGE
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Item Tag #

79 I 26

80 J 26

81 91 27

82 98 27

83 K 27

84 161 28

85 162 28

86 163 28

87 207 28

88 214 28

CIP 0.86

CIP 0.80

CIP 0.89

CIP 0.7O

CIP 0.75

PLUG 0.69

PLUG 0.71

PLUG

CIP

CIP

89 216 28 CIP

90 166 29 PLUG

91 29167 PLUG

0.80

0.73

0.79

0,81

0.37

0.43

92 168 29 PLUG 0.42

93 208 29 CIP 0.44

94 213 29 CIP

95 215 29 CIP

96 95 30 CIP

0.44

0.39

0.49

97 131 30 PLUG 0.38

98 132 30 PLUG 0.34

99 133 30 PLUG 0.38

100 L 30 CIP 0.28

101 M 30 CIP 0.47

102 88 31 CIP 0.43

103 120 31 PLUG 0.39

104 134 31 PLUG 0.39

105 135 31 PLUG 0.40

106 N 31 CIP 0.43

107 O 31 CIP 0.43

108 96 34 CIP 0.89

* 109 D 34 CIP N/A

110 E 34 CIP 0.70

111 A 35 CIP 0.77

112 B 35 CIP 0.87

113 C 35 CIP 0.77

114 87

115 G

36 ClP 0.77

36 CIP 0.78

116 CIP36 0.80

117 89 37 CIP 0.85

Open Circuit -D9- CONTINUED ON THE NEXT PAGE



118 92 37 CIP 0.83

119

** 120

121

122

123

124

186

187

189

252

253

37

38

38

38

38

38

CIP

CIP

CIP

CIP

PLUG

PLUG

125 255 38 PLUG

126 153 39 CIP

127 154 39 CIP

128 176 39 CIP

129 254 39 PLUG

130 259 39 PLUG

131 260 39 PLUG

132 185 40 C IP

40

40

** 133

134

190

193

248135 40

136 249 40

137 251 40

138 191 41

139 192 41

140 194 41

141 246 41

142 247 41

143 250 41

CIP

CIP

PLUG

PLUG

PLUG

0.79

0.64

1.54

1.37

0.61

1.18

0.79

1.18

1.40

1.29

1.11

0.78

0.84

1.51

0.64

1,39

0.44

0.93

0.76

CIP 1.36

CIP 1.29

CIP 1.40

PLUG 0.77

PLUG 0.41

PLUG 0.50

144 182 42 CIP 0.95

145 188 42 CI P 0,90

146 195 42 CtP 0.91

147 177 43

148 43

CIP

151

CIP181

0,85

0.96

149 183 43 CIP 0.93

150 271 44 PLUG 0.81

276 44 PLUG 1.49

152 279 44

45

45

45

PLUG

PLUG

PLUG

PLUG

PLUG46

153

154

155

156

121

122

278

128

1.33

1.09

1.33

1,03

0.62

CONTINUED ON THE NEXT PAGE
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: TABLE 1
(Continued)

Listing of SPIP 94 Matrix Thermocouples Tested

Item

157

158

159

160

I Tag # I Block

130 46

Installation Type

PLUG

280 46 PLUG

126 47 PLUG

127 47 PLUG

161 277

* 162 13

18163

164 26

165 27

166 28

167 29

168 30

31

32

33

34

47

53

53

53

53

53

53

53

53169

170

171

53

53

53

PLUG

CIP

CIP

CIP

172

* 173

174

* 175

176

* 177

Installation Index (sec)

1.01

0.56

0.66

0.55

0.84

N/A

0.93

0.87

ClP 0.78

CIP 0.83

CIP 0.86

CIP 0.87

CIP 0.77

CIP

CIP

CIP

1.24

0.85

0.80

35 53 ClP N/A

36 53 CIP 0.90

37 53 ClP N/A

CIP 1.20

CIP N/A

ClP 0.99

CIP N/A

CIP 0.94

CIP N/A

CIP 0.85

CIP N/A

CIP 0.80

CIP

38

39

178 40

* 179 41

180 42

* 181 43

182 44

* 183 45

184 46

185

53

53

53

53

53

53

53

53

53

186

187

* 188

189

190

191

192

193

194

47 53 1.04

48 53 CIP 0.85

49 53 CIP 0.89

50 53 CtP

6 54 CIP

7 54 C IP

9 54 CIP

CIP

ClP

CIP

CIP

54

54

54

54195

14

15

61

62

N/A

1.20

1.00

1.00

0.96

1.01

0.85

0.86
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TABLE 1
(Continued)

Ustlng of SPIP 94 Matrix Thermocouples Tested

item Tag # Block

196 63 54

197 64 54

198 66 54

199 67 54

2OO 68 54

201 69 54

202 71

** 203 72

74204

54

54

54

Installation Type Installatlon Index (sec)

CIP 1,06

CIP 1.26

CIP 1.12

CIP

CIP

0.98

0,88

CIP 1.12

CIP 0.91

CIP 0.93

CIP 0.92

** Low IR
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AMS-OWG NASOIgA

SPIP 94 ANALOG TEST MATRIX

SRI-I-01 SRI-1-02

CIP

0.16 0,18

CIP

SRI-I-05 SRI-I-04

0.24

CIP

SRI-I 0b

CIP

0.464

0.38t

0.282

SRI-I 07 l

l-1
0 1899 IJO.1 768

0.27

; 0.24

CIP

SRI 1-06

f 0461

0.360

0250

CIP

CIP PLUG CIP PLUG

CIP

284D

Pl U()

2566 \ _ 2500

CIF_ :_[ UC)

*Note AI! d[menslo, qs O.FC Irlche_ [rorT_ fie)me surfoce

Figure 1A Layout of SPIP 94 Analog Test Matrix
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AMS-DWG NASO20A

SPIP 94 ANALOG TEST MATRIX

 R11 l  R12
0.161 , 0.1824

CIP PLUG CIP PLUG

CIP

SRI-I-14_0.5548

0.4407 I -_10A493

0.3312 _0.3368

PLUG

CIP

SRI-I- 16 _--_T_

0.4332

013253 | ---Io_183
0.2411 L____°2333

PLUG

CIP

0.3534 .3291

0.2706 / ----Io.2316
0.1742 k. _ 0.1501

PLUG

CIP

SRI t-20 [____1o,5491 0.5095

o_ / _o._
o.3a6o L -_j o..mso

F)[ tJC

SR1-1-15_,05625

0.4563 I----104213

0.3249 _0.3352

CIP PLUG

SRI- I--17_

I 0.5375
) 04552 i --_0.4756

, 0.3731 [ .,_-_ 0.4054

CIP PLUG

SRI-1-19_; I_ 0 3704

0 1926 _ 0.2062

CIP PLUG

0.4115

03260

0.2555 __.

CIP PLtJC

*Note All d;mer_sior_s ore inches frorq fl(]rrle _;urfc;ce.

Figure 1B Layout of SPIP 94 Analog Test Matrix
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AMS DWC NASO21A

SPIP 94 ANALOG TEST MATRIX

SR1-11-24 SR1-11-25

I 0.582
0.294

_- Q198

CtP

SRI IJ-26

I 0515

" _ 0 2275
/

O. 152
_ __ _ .......

C PP

F -" . SRl-l[- 28 ._

L 0_4 • _0187 l
CIP PLUG

0 177 _0181

CIP

SRI li1-,34

:" I 047.50

04(}35

; 0.3065

PLUG

C IF_

0.418

; 0.333

0.225

I

*Note:

CtP

SR1-1t-27

03795

Q289

0.1775

CIP

SRI 11--29____ 1 ___0,408 0.406

0.343 I----10550

0.208 k_-:-J o 2_2

CtP PLUG

SRI-II-,3 _ _0481 0459

0.376 / N0.592

0.307 _ 0.1 79 /
J

CIP PLUG

SR1-111-55

0.4570

03725

0.2860

C[P

All dimensions are inches from flame surface

Figure 1C Layout of SPIP 94 Analog Test Matrix
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AJglS-DWG NASO22A

SPIP 94 ANALOG TEST MATRIX

SR1-111-36

0.367

0.273

0.202

CIP

SR1-111-.37

0.3845

0.296

0.208

CIP

0.420

0.349 j N0362

0.270 _ 0.275

CIP

SR1-111-39_o .-
044.6 446

0.338 j No.335
0.281 _ 0.270

CIP

SRI III-- 40

o ooI%
o._o_ / No._o_
0.218 k__ 0.222

CIP PLUG

SRI-III- 4_80.384

0298 1--10280
0.203 t_ o._8_

CIP PLUG

)

PA-I-42

0.433

0.353

0.273

CIP

PA-I--43

i/ 0.416

0.327

0238

CIP

PA-I-44

PLUG

PA -I-45 PA-I-46 PA-I-47

PLUC PL UC PLUC

*Note: All dimensions are inches Irom flame surface

Figure 1D Layout of SPIP 94 Analog Test Matrix
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AMS-DWG NAS005F

Plug

/
/

Thermocouple

/
/

/
/

/
/

/

/
/ \ /

\ \ /
,/

//

Figure 2 Carbon-Phenolic Probe Installation
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AMS-DWG NAS005G

pie

Figure 3 Carbon-Phenolic Cured-In-Place Installation
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0.14
Histogram for CIP Thermocouples SLBO8OB--O1A

0.12

0.1

= 0.08

_. 0.06

0.04

0.02

0

\ \\\\\

ili i
/ \

1///// \\_\

_1// \

-- T ] l r 1

C3 C3 C_ C_ G) G) C) C3 C3 C3 C3 C3 (_ C) C) 0 C3 C_
•-" 04 09 _t" _ rE) I'_ _ O_ 0 _'-- 04 09 _1" L_ rid I'_ O0
d o c_ 0 d o c5 c5 c5 _- _ .......

Installation Index (sec)

Figure 4 Histogram of Installation Indices for CIP Thermocouples
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Histogram for Plug Thermocouples
0.18

SLB08OB-02A

0.16

0.14

0.12

•-- 0.1
J_

.Q
o 0.08

Q.

0.06

0.04

0.02

0

Figure 5 Histogram of Installation Indices for Probe Thermocouples
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along with standard gaussian distributions for the two types of installations evaluated. It can be

seen from these figures that the CIP installation (Figure 4) demonstrated a more gaussian

behavior than the probe installation. The skewed data shown in Figure 5 for the probe

installations may be due to the mechanical processes involved in the detailed machining and

manual insertion of the thermocouples.

The thermocouples in each installation type were then classified into three types (I, II, III) to

represent three classifications of installation integrity. The best installations, or those with the

fastest responses, were identified as Class I, and Class III containea the slowest thermocouples.

Class I and III thermocouples were those with installation indices greater than one standard

deviation from the mean. Those thermocouples which had LCSR installation indices less than

one standard deviation from the mean were grouped into Class II. Class II contained 68% of the

thermocouples tested. Additional statistical analyses were applied to determine if any of the

thermocouples were gross outliers. An outlier was defined as any thermocouple whose

installation index fell outside of a two standard deviation band around the mean. These outliers

are thermocouples that seem to have either very good or very poor installation.

All CIP thermocouples tested are listed in Table 2 and are grouped by their installation

integrity class (I, II or III). The three distinct groups listed in Table 2 represent the varying quality

of the installation. The results for the CIP installations are shown in a graphical form in Figures 6

and 7. The CIP installed thermocouples that were determined to be outliers are listed in

Table 3. As seen in this table, sensors L and 215 had a very good installation and

thermocouples 185, 187 and 209 had a poor installation in reference to the other CIP

thermocouples. Figures S through l0 show the LCSR transients for the outliers listed in Table 3

versus class I, II and Ill LCSR transients.
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TABLE 2

Item Tag # Ii:_.:Block 1 iciasslfi !°n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

L

215

N

O

88

213

2O8

M

3O

29

31

31

0.28

0.39

0.43

0.43

0.4331

29 0.44

29 0.44

30 0.47

95 30

78 10

186 38

190 40

79 9

76 11

2798

34

282O7

56

K 27

55 5

A 35

C 35

31 53

87 36

5327

G

F

36

37

28

53

214

46

0.49

0.61

0.64

0,64

0.68

0.68

0.70

0.70

0.73

0.73

0.75

0.75

0.77

0.77

0.77

0.77

0.78

0.78

0.79

0.79

0.80

CONTINUED ON NEXT PAGE
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TABLE 2

(Continued)

30 239

31 J

32 H

34

35

36

37

38

34

216

99

39

40 61

41 89

42

92

28

223

43

44

45

46

47

48

177

20

26

36

49 I

50 240

51 62

52

53

28

26

53

54

55

56

57

58

59

6O

0.80

0.80

0.80

0.80

0.81

0.83

37 0.83

53 0.83

19 0.84

54 0.85

37

43

33 53

48 53

60 8

51 5

44

29

53

4

26

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.86

0.86

20 0.86 II

54 0,86 II

53 0,86 II

B

230

26

30

68

91

96

49

35

21

53

53

54

27

34

53

0.87

0.87

0.87

0.87

0.88

0.89

0,89

0.89

CONTINUED ON NEXT PAGE
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: TABLE 2
(Continued)

61 59

62 36

63 188

64 195

65 71

66

67

74

7

63

0.90

0.90

42 0.90

42 0.91

54 0.91

54

72 54

68 84 14

69 221 19

70 183

71 18

72 42

73 182

74 58

75 181

83

43

II

0.92 II

0.93 II

0.93

0.93

0,93

0,9353

53 0.94

42 0.95

6 0.95

0.9643

4

54

76

77

78

79

80

81

82

83 4

984

85

86

87

88

89

90

14

85 14

67 54

1 1

0.96

0.96

0.97

0.98

0.99

53 0.99

17 0.99

2 0.99

40

225

7

15

54

54

54

2 3

227 19

204 21
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91

80

234

15

18

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

1.00 II

1.00 II

1.0t II

1.02 II

1,03

1,03

1.03

1.03
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TABLE 2

Item J Tag # .... :_Bi_k

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

118

117

118

119

47 53

57 6

63 54

217 24

69 54

66 54

21 14

153 39

38 53

6 54

16 15

32 53

231 18

229 21

64 54

5 15

176 39

192 41

17

12

191 41

38

24

18

16

16

4O

16

226

82

189

212

235

244

243

193

242

1.04

1.06

1.06

1.11

1.12 II

1.12 II

1.13 11

1.18 II

1,20 II

1.20

1.22

1.24

1.24

1.25

1.26

1.29

II

Ill

III

III

III

III

III

1.29 III

1.29 III

1.30 Ill

1.32 Ill

1.36

1.37

1.37

1.38

1.38

1.39

1,39

1.39

CONTINUED ON NEXT PAGE
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TABLE 2

(Continued)

Listing of Cured-In-Place ThermOcouple Classifications

Item ! Tag #

120 237

121 154

122 194

123

123

125

209

185

187

Block

2O

39

41

25

4O

38

Installation Index (sec)

1.40

Classification

1.40 III

1.40 III

1.48 III

1.51 III

1.54 III
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TABLE 3

Listing Of Cured-In-Place Outliers

IITEM TAG # BLOCK INSTALLATION INDEX

1 L 30 0.28

2

3

4

5

215

209

185

187

29

25

4O

38

0.39

1.48

1.51

1.54
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Table 4 lists all the thermocouples with probe-type installation grouped according to their

classification. Figure 11 shows the results for the probe installed thermocouples graphically. The

outliers for the probe installation type thermocouples are listed in Table 5. Figures 12 and 13

show the LCSR transients for the outliers listed in Table 5 versus typical class I, II and III LCSR

transients. Figure 14 shows the transients for the three CIP sensors in block 38. Among these

three sensors, tag #186 responded differently than the other two sensors. This could be

attributed to a low insulation resistance (IR). Low insulation resistance was verified by taking

actual insulation resistance measurements on sensor 186.

3.2 LCSR Versus Analog Results

After the LCSR testing at AMS, the carbon-phenolic specimens were sent to either SRI or

the Marshall Space Flight Center Plasma Arc facilities for firing. The firing tests consisted of

heating one side of the specimen and acquiring data from the sensors on the front and back

surfaces as well as the sensors embedded in the material. This data was subsequently analyzed

by AMS to see if a correlation existed between the analog results and the LCSR results could be

determined.

In the analog data, several blocks exhibited an unusual phenomenon in that a sensor far

away from the firing surface would respond quicker than a sensor close to the firing surface.

Two examples of this behavior are shown in Figure 15. Note that only the sensors in question

are shown in these figures. The remaining sensors in the block were removed in order to

highlight the phenomenon. This behavior was seen in nine of the test specimens on fourteen

different occasions as listed in Table 6. After identifying this behavior, the LCSR results were

evaluated for each of the occurrences. The results showed that for eight of the fourteen cases,

the sensor which responded faster had a smaller installation integrity index than the sensor that

was closer to the firing surface.
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1

2

3

4

5

6

7

132

22

166

2O

25

133

9

10

11

12

13

14

3O

17

29

8

19

3O

1724

8 160 21

131

15

120

134

157

158

135

201

30

31

31

21

21

31

10

112O5

135 31

198 20

16

17

18

19

20

21

22

23

24

25

247

168

150

23

167

144

248

41

0.34

0.37

0.34 I

0.37 II

0.37 II

II

0.38 II

0.38 II

0.38 II

0.38

0.39

0.39

0.39

0.40

0.40

0.40

0.40 II

0.40 II

0.41 II

0.41

29 0.42

14 0.43

17 0,43

0.4329

16

4O

26 149 15

27 17 7

28 147 14

29

30

31

32

33

250

2O3

127

145

199

34

41

28O

12

47

16

20

46

0.44

0.44

0.46 II

0.46 II

0.50 II

0.50

0.55

0.55

0.56

0.56

0.56
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TABLE 4

(Continued)

Usting of Probe Installed Thermocouple Classifications

Classification

35 252 38 0.61 II

36 128 46

37 146 14

38 126

39

40

41

42

43

44

45

161

162

179

148

165

164

251

46 246

47 259

48 255

49

5O

51

52

53

54

55

56

57

58

59

60

61

62

63

163

271

202

260

277

156

249

196

130

278

12t

254

197

253

178

47

276

28

28

0.62 II

0.64 II

0.66

0.69

0.71

15 0.75

15 0.75

19 0.75

19 0.76

4O

41

39

38

28

44

39

47

18

40

18

46

45

45

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.84

0.84

0.86

0.93

1.00

1.01

1.03

1.09

39 1.11

18 1.12

38 1.18

16 t.22

44

64 279 44

65 122 45

66

III

III

III

III

II1

III

1,33 III

1.33 III

1.49
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TABLE 5

Listing of Probe Outliers

Item

2

Tag #

122

279

276

Block

45

44

44

Installation Index (sec)

1.33

1.33

1.49
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Item

/

TABLE 6

Thermocouple Analog Data Comparisons

Block 1 Thermocouples Compared

6

7

82

3 14

4 17

5 18

18

9

10

11

12

13

14

18

2O

28

28

28

40

41

41

17,59

20, 9

85, 146

22, 225

231, 196

234,156

235,197

200,237

161, 216

162,207

163, 214

190, 251

191, 246

192, 247
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Of the remaining six cases, a case by case analysis was used to evaluate why the sensors

responded differently. In the first case, the sensor was found to have a low insulation resistance

and therefore the LCSR transient was significantly different from the transients of the other

sensors of the same installation (Figure 16). The next three cases all occurred in block

number 18. This block was found to have very similar transients for the CIP sensors and the

plug sensors (Figure 17), where the CIP and plug transients are usually very different (Figure 18).

The remaining two cases seem to follow the typical CIP and plug type transients. The dynamic

response of the last two sensors may have been influenced by factors other than the installation.

4. CONCLUSIONS

LCSR transients for measuring the installation integrity of embedded thermocouples were

evaluated for 204 thermocouples and the following conclusions were made:

1. Fourteen of the 204 thermocouples were received "open" and were therefore not
testable.

2. Three thermocouples had very low insulation resistances.

3. Eight thermocouples were identified as outliers from an attachment standpoint.

4. The Cured-In-Place thermocouples demonstrated a better gaussian distribution when
compared to the probe installations.

5. Of the fourteen inconsistencies identified using the analog data, 12 were detectable by
using LCSR.

Based on the findings presented in this report, the LCSR test is an effective tool for

verifying the attachment of thermocouples in solid material.
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1. INTRODUCTION

Analysis and Measurement Services Corporation (AMS) performed a series of installation

integrity tests on several thermocouples embedded in the Redesigned Solid Rocket Motor

(RSRM) blast tube liner. The tests were performed at the George C. Marshall Flight Center

(MSFC) in March and April 1994. The testing consisted of pre and post-curing tests. During the

pre-curing tests, eleven Erosion Monitoring Thermocouple Array (EMTA) gages, each containing

six thermocouples, were tested. Post-curing tests consisted of ten of the pre-cured EMTA gages

and four additional gages for a total of 84 thermocouples.

The thermocouple testing at MSFC was performed using the Loop Current Step Response

(LCSR) method. The purpose of this testing was to provide LCSR results to assist in the

evaluation of the transient temperature data taken during firing of the instrumented blast tube.

The pre-cure LCSR test results were also used to determine which gages would be cured into

the blast tube liner.

The LCSR tests concentrated on evaluating the differences in the response characteristics

of each thermocouple prior to firing the blast tube. In addition, the LCSR data provides useful

information for evaluating the effects of the curing process on the sensors responses. It has

been shown in laboratorytests performed at AMS that inadequate or poorly installed

thermocouples can be detected by noticeable differences in the LCSR response. A poor

installation will result in a slower response time due to differences in the heat transfer properties

of the area immediately surrounding the thermocouple. The data presented in this report are in

terms of normalized LCSR transients for all thermocouples tested.

-P.2 -



2. BACKGROUND

The accuracy of transient temperature measurements with thermocouples is highly

dependent on the response time of the thermocouples in the specific media (water, air, solids,

etc.) in which they are installed. It has been shown, during laboratory research performed by

AMS, that the response characteristics of thermocouples that are installed in solid materials, such

as those used in the RSRM, depend strongly on the bonding between the thermocouple and the

solid material (i.e., the installation integrity). As documented in the results of a recent research

project performed by AMS for NASA, the LCSR test method can be used to assist in evaluating

the installation of thermocouples embedded in solid materials.

The LCSR test involves applying an electrical current through the thermocouple leads.

This current results in Joule heating of the measuring junction to an elevated temperature, several

degrees above the ambient temperature. The heating current is then terminated, and the output

from the thermocouple is monitored as it cools back to the ambient temperature. This cooling

transient contains inherent information about the response of the thermocouple in the particular

environment in which it is installed.

3. RESULTS

On March 9-11, 1994, AMS performed a series of LCSR tests on eleven instrumented

EMTA gages embedded in the RSRM blast tube liner. These gages were constructed from four

different composite materials: 5066 (carbon-phenolic), 5067 (carbon-phenolic), AsNBR (asbestos

filled rubber) and CFEPDM (carbon filled rubber). Each gage contained six thermocouples cured
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into the material that were to be used for transienttemperaturemeasurementsduring the firing.

Figure 1 is an illustrationof the EMTAgages prior to curingthem into the blast tube liner. All

thermocouplestested in each gage were small diameter(0.005"),type K, bare thermocouples

manufacturedby ThiokolCorporation.

OnApril 18-21,1994,AMSperformedadditionalLCSRtestsafterthe EMTAgageswerecured

into the blast tube liner of the RSRM,referredto as the post-curetests. A total of fourteengages,

with six thermocoupleseach,were post-curetestedfor a total of 84 thermocouples. Ten of the

fourteengageswerealso testedpriorto curingthemintothe blasttube liner. This provideda set of

comparisondatathat could beusedto representthe effectsof thecuringprocesson the installation

integrityof the thermocouples. Figure2 is an illustrationof the configurationof the gages that are

cured into the blast tube linermaterial. Figure3 is an illustrationof the RSRMblast tube.

3.1 PRE-CURETESTING

Table 1 is a listing of the pre-curethermocouplestested. Note that a low insulation

resistance(I/R)was notedfor thermocoupletag number#2 in gage#28. The insulation resistance

was measured between the thermocouple leads and the stainless steel tube which encased the

thermocouple leads (see Figure 1). The CFEPDM material, used in gage #28, is electrically

conductive, therefore, the bare thermocouple junctions are covered with "M Bond 610", a commonly

used epoxy, before they are cured into the gage assembly in order to provide electrical insulation.

The low I/R seen in this thermocouple could be due to an insufficient amount of epoxy around the

junction resulting in increased conductivity between the junction and the stainless steel tube. I/R tests

were also performed on all CFEPDM gages, even those that were not LCSR tested. Thermocouple

#4 in gage #40 was also found to have a low I/R. As a result, both gage #28 and gage #40 were

not cured into the blast tube liner.
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The averaged, and normalized, LCSR transients are shown in Figures 4 to 7. These figures have

been grouped according to gage material type. The averaged transients represent the average of

five to ten individual transients taken for each thermocouple. In seven of the eleven gages (gage

#'s 22,23,25,29,31,32,37), thermocouple #1 showed a slight response difference with respect to the

other 5 thermocouples in the gage. Thermocouple #1 is the face thermocouple (Figure 1). Gage

#26 also showed a slight difference for thermocouple #'s 4 and 5.

3.2 POST-CURE TESTING

Table 2 is a listing of the post-cured thermocouples tested. Note that three thermocouples were

defective due to open circuits in the thermocouple leads. In addition to the open circuits,

thermocouple #4 in gage #34, located at AFT Dome 270 ° had a low I/R reading. This gage was

pre-cure tested and did not have a low resistance reading before being cured into the blast tube

liner. The averaged LCSR transients for the post-cure tests are shown in Figures 8 to 11. The

transients are grouped according to their location in the blast tube liner. The post-cure testing

revealed eight of the fourteen gages (gage #'s 25,31,37,30,20,29,27,24) with slight response

differences with respect to the other 5 thermocouples in the gage. Of these eight gages, six (gage

#'s 25,31,37,29,30,20) of the outlier's were identified as thermocouple #1. Four (gage #'s

25,31,37,29) of the six, thermocouple #1 outlier's gages, were also identified as having a slight

response difference in the pre-cure testing. The other two gages (#'s 30,20) were not pre-cure

tested.

3.3 PRE-CURE VS POST-CURE

Ten of the eleven instrumented gages tested before being cured into the blast tube liner were

also post-cure tested. Gage #28, originally planned for installation into the AFT Dome CYL 270 °

-Ell-
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iiii: iiiii     I i i '
*'1 32 AFT Center 0 ° 1 AsNBR

2 32 AFT Center 0 ° 2 AsNBR

3 32 AFT Center 0 ° 3 AsNBR

4 32 AFT Center 0 ° 4 AsNBR

5 32 AFT Center 0 ° 5 AsNBR

6 32 AFT Center 0 ° 6 AsNBR

7 26 AFT Center 90 ° 1 5066

8 26 AFT Center 90 ° 2 5066

9 26 AFT Center 90 ° 3 5066

10 26 AFT Center 90 ° 4 5066

11 26 AFT Center 90 ° 5 5066

12 26 AFT Center 90 ° 6 5066

13 25 AFT Center 180 ° 1 5066

14 25 AFT Center 180 ° 2 5066

15 25 AFT Center 180 ° 3 5066

16 25 AFT Center 180 ° 4 5066

17 25 AFT Center 180 ° 5 5066

18 25 AFT Center 180 ° 6 5066

19 31 AFT Center 270 ° 1 AsNBR

20 31 AFT Center 270 ° 2 AsNBR

21 31 AFT Center 270 ° 3 AsNBR

22 31 AFT Center 270 ° 4 AsNBR

23 31 AFT Center 270 ° 5 AsNBR

24 31 AFT Center 270 ° 6 AsNBR

** Open Circuit
CONTINUED NEXT PAGE
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73 2O
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* 82 34 AFT Dome 270 ° 4 CFEPDM

83 34 AFT Dome 270 ° 5 CFEPDM

84 34 AFT Dome 270 ° 6 CFEPDM
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location was not cured into the liner. It was replaced with gage #37. This change was

implemented because of the low I/R reading detected during the pre-cure tests for thermocouple

(tag number #2) in gage #28. Figures 12 to 21 show comparisons between the pre-cure and

post-cure LCSR transients grouped according to the gage location in the blast tube. As seen

in these figures, most of the thermocouples had a slightly slower response after curing compared

to the pre-cure tests. In two locations (Aft Center 270 ° and the Aft Dome Cyl 180°), the post-

cure transients were faster than the pre-cure transients.

4. CONCLUSIONS

A series of LCSR tests were performed on several thermocouples embedded in the

Redesigned Solid Rocket Motor blast tube liner. The purpose of the tests was to evaluate the

installation integrity of the thermocouples. This testing consisted of pre and post-curing tests.

During the pre-curing tests, eleven Erosion Monitoring Thermocouple Array (EMTA) gages, each

containing six thermocouples, were tested. The pre-cure testing revealed low insulation

resistances for thermocouple #2 in gage 28 and therrnocouple #4 in gage 40. As a result, both

gage #28 and gage #40 were not cured into the blast tube liner. Post-curing tests consisted

of the ten of the pre-cured EMTA gages and four additional gages for a total of 84

thermocouples. Post-cure testing also revealed low insulation resistance for thermocouple #1

in gage 32. Open circuits were identified during the tests in thermocouple #1 in gage 32,

thermocouple #3 in gage 30 and thermocouple #6 in gage 30 during the post-cure testing.

Thermocouple #1 (face thermocouple) in each of the assemblies generally had a slight response

difference with respect to the other thermocouples in the gage. The response differences

occurred in seven of the eleven gages in the pre-cure tests and in six of the fourteen gages in

the post-cure LCSR testing. Overall, there was no indications of any significant change in

response that could be attributed to the curing process.
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APPENDIX F

SURVEY OF AEROSPACE INDUSTRY ON ADHESIVES

AND BONDING PRACTICES





SURVEY RESULTS

This appendix provides a summary of an informal survey of the aerospace industry to
identify sensor adhesives and bonding practices.

A listing of those who responded to the survey are given in Table F.1 followed by a
summary of the results of the survey in Table F.2.
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TABLEF.I

Ii SURVEY PARTICIPANTS
Boeing Aircraft
Jim Wallace
206-655-2972

Cotronics Corp.
Barry Reznik, Pres
718-646-7996

Entran Devices

Bob Levy
1-800-635-0650

HITEC (Mass)
Douglas A. Unkel
President

(508) 692-4793

,o-Measurements

Group (SC)
Tom Rummage
205-830-2832

_.SA Lewis Research Ctr (CL)

Dr. Jib Lei
216-433-3922

NASA - Marshall
Bob Burns
205-544-2556

tntsville

Lon Stevens
205-544-6146

b/Utah

John Shipley
801-863-6945

University of TN
Scott Liter
974-6751
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APPENDIX G

1. BONDING TECHNIQUES FOR SURFACE MOUNTED RTDs AND STRAIN GAGES

1.1 RTD Bonding

A. Required Material

1) Adhesive (or cement) conducive to bonding and sensor
operational environment

2) Adhesive tape with high electrical and thermal resistance

3) Polyurethane adhesive coating (where applicable)
4) Glass woven fabric (where applicable)

5) Acetone,denatured alcohol, or isopropyl alcohol
6) Protective rubber gloves

7) Lint-free cloth wipes

8) Commercial heat gun (for accelerating cures)
9) Glass containers and mixing spatula

10) Standard medicine dropper

11) Steel wool or other abrasive metal polish

12) Sand paper of appropriate grit for wet sanding
13) Plastic film

14) LCSR/SHI equipment

15) Volt/Ohm meter and megohmmeter

g. Application Environment

The temperature of the bonding environment should be in the range of 50-150

degrees F. All mounting surfaces should be entirely free of moisture during the

bonding procedure.

C. Preliminary Test

Using a Volt/Ohm meter, measure the resistance between PRT lead wires. The

readings should be within manufacturer resistance specifications. Test the

insulation resistance (IR) of the PRT to be sure the IR value is within

manufacturers specifications. Reject gages that do not adhere to these

specifications.
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D° Preliminary Preparation

Clean (polish) mounting area to bright finish with steel wool. Wearing gloves, wet

sand the mounting area. Wipe bonding area, unidirectionally, with lint-free cloths

that have been dampened with Acetone until there is no evidence of stain on the

cloth. Flush the bonding area and rinse the PRT head and sheath with Acetone

or equivalent.

E° Adhesive Preparation

Using a clean non-porous flat surface and clean mixing spatula, thoroughly mix

epoxy adhesive or cement while following specified manufacturers mixing

instructions or those instructions that have proven effective in the past. Care must

be taken to mix the materials as specified and to note the effective product usage

date and pot life of each material.

F° Mounting

Gently form the PRT sheath wire to fit the contours of the part it is to be mounted

upon. This fit will provide a relaxed contact between thesensor and the mounting

surface. Do not bend the sheath wire within .25" of the PRT sensing head.

Position the sensor over the center of the prepared bonding area and tape the

sensor wires with adhesive tape. Thoroughly wet (with prepared adhesive or

cement) the sensing surface of the PRT and the corresponding mounting surface.

The coating on each should be approximately .006"-.020" in thickness. Gently

press the sensor end to seat it firmly into place and remove all excess epoxy or

cement from the edges of the sensor with a mixing spatula. A small amount of

excess is acceptable. Apply a plastic film cover over the sensor to hold it in place

and ensure a free-release surface and moisture barrier. Allow time for the cement

or epoxy to cure according to manufacturer specifications. Accelerated cure times

are acceptable when following manufacturer schedules.
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G. polyurethane Application

This process must be carried out over a temperature range of 50-150 degrees F

in a moisture free environment. Clean the cured epoxy (cement) area including

a 1" margin around the sensor using Acetone and a cloth soaked in Acetone.

Steel wool can be used to restore the surface to a bright finish. Allow 15 minutes

(minimum) to dry. Examine the bonding area for any visual evidence of sensor

debonding. Apply the LCSR and SHI tests as a nonvisual means of detecting

bonding quality. Reject sensors that fail either visual, LCSR, or SHI test criteria for

proper bonding.

Examine the components that make up the polyurethane adhesive for

inconsistencies as specified by the manufacturer. Mix polyurethane per

manufacturer specifications in a well ventilated area and examine mixture for

proper consistency. Apply a thin, even coat of polyurethane over the sensor and

mounting area. Be sure sensor is fully covered. Place a small section of glass

weave fabric over the polyurethane coated surfaces. Be sure the glass weave

fabric becomes totally saturated. Remove all folds and air pockets from the glass

fabric so it conforms to the sensor surface. Remove all excess polyurethane.

Allow the polyurethane to cure according to manufacturer's specifications.

Visually inspect for debonding. Apply the LCSR/SHI test to determine concealed

debonding that is not detectable by visual means. Reject any sensor bond that

can be detected visually or by LCSR/SHI tests.

All hazardous materials and processes should be handled within the safety

provisions set forth by the manufacturer and the particular safety specifications of

the user facilities. Questions regarding safety matters should be referred to the

manufacturer of the material in question. Before work begins, remove all existing

strain gages on the test component.
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2. STRAIN GAGE BONDING

A. Required Material

1) Adhesive (or cement)

2)

3)

4)

5)

6)

7)

8)
9)

10)

11)
12)

13)

14)

15)

16)

17)

18)

19)

20)
21)

22)

conducive to bonding and sensor

environment

Adhesive tape with high electrical and thermal resistance

180 grit open-meshed non-clogging sanding fabric

Deionized water
Acetone,denatured alcohol, or isopropyl alcohol

Protective gloves
Lint-free cloth solvent wipes
Commercial heat gun (for accelerating cures)

Surface conditioner

Cotton-tipped applicators

Clean tissue or gauze

Neutralizer

Mylar tape or polyamide tape

I.D. tags
Teflon sheet
3/32" thick silicone foam rubber pad

Clamp
Heat shrink mylar tape

Borescope (if available)
Volt/Ohm meter and megohmmeter

Overlay gage coating
LCSR/SHI equipment

operational

a. Application Environment

The temperature of the bonding environment should be in the range of 50-150

degrees F. All mounting surfaces should be entirely free of moisture during the

bonding procedure.

C. Preliminary Preparation

Wipe bonding surface with acetone, denatured alcohol, or isopropyl alcohol to

remove surface contamination. The solvent wipe shall include the area

approximately 4" to 6" on all sides of the installation area. Air dry for 15 minutes

at ambient conditions. Do not expose solvent or vapors to open flame or heat
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source. The bonding area shall be abraded in a cross-hatched fashion with the

specified sanding fabric in order to remove materials on the bonding area that

would prevent good bonding. Pitting, protrusions, scratches and other such

imperfections must be removed by grinding, filing or other suitable methods.

Spray the bonding area with deionized water to obtain a completely wetted

surface. Apply surface conditioner (where applicable) and scrub with cotton-

tipped applicators until a clean tip is no longer discolored by scrubbing. Keep the

surface constantly wet with the conditioner until cleaning is completed. Wipe the

cleaned area with a single unidirectional stroke of a clean tissue or gauze. With

an additional clean tissue, make a single stroke in the opposite direction. Never

wipe back and forth. Apply a surface prep neutralizer to a tissue until completed

saturated. Apply the neutralizer to the bonding area and scrub with cotton-tipped

applicators. Wipe the area dry with single unidirectional tissue strokes.

O. Adhesive Preparation/Application

Mix the adhesive according to manufacturer suggested procedures. Mixing of a

spare amount of adhesive is recommended to prevent unexpected delays during

strain gage installation.

Bonding of strain gages and terminal strips should take place within 45 minutes

after surface preparation. Place the strain gage on high temperature mylar tape

or polyamide tape. Temporary ID tags should be applied to gage lead wires.

Coat the gage and terminal mounting surface with a thin layer of adhesive. Do

not allow the adhesive applicator to touch the tape mastic which holds the

preassembled gage in place. Let the adhesive air dry 10 to 15 minutes. Position

the gage/terminal until it is tacked down. Use additional mylar tape, if necessary,

with tape/adhesive contact kept to a minimum. Apply a thin piece of teflon
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followed by a 3/32" thick silicone foam rubber pad over the gage/terminal area.

Apply sufficient pressure using a clamp to ensure an intimate cure between the

strain gage and the substrate. Wrap with heat shrink mylar tape and apply a heat

gun for shrinking. Cure adhesive in accordance with manufacturer's curing

schedules.

E° Gaqe/Bond Inspection

Visually inspect the bonded gage. IOX or 40X magnification should be used if

available. Adhesive must be evident along the entire periphery of the gage. Apply

the LCSR/SHI test to ensure that no air bubbles, voids, or contaminates are

present in regions where they cannot be visually detected. A borescope can also

be used for verification (if one is available). Using a volt/ohm meter and a

megohmmeter, verify that the resistance between each leg as well as the

insulation resistance are within manufacturer's specifications.

F. Overcoat Application

Apply two coats of strain gage coating using a fine brush. The first coat shall be

a thin, brush applied layer over the bonded gage/terminal assemblies. The

overcoat should extend around the gage/terminal periphery. Allow two hours

minimum for air drying of the first coat. The second coat should be applied

evenly with a brush, fully covering the area previously coated. No visible voids

should be present.
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TTB - OPERATION INSTRUCTIONS

TIB-SOP-1-OO6

STRAIN GAGE INSTALLAllON

DATE: MAY 1, 1992

HOWARD A. SOOHOO
INSTRUMENTATION ENGINEER
NASA/EP75

VAN BLANKENSHIP

INSTRUMENTATION TEAM LEADER

NOTES: NASA/EP75

1. This stand operating procedure is to specify a uniform

method for strain gage installation at the Technology
Test Bed (TTB) Test Facility.

2. This procedure shall be followed for all strain gage

installations for test operations at the TTa Test Facility.

3. The Test Stand Instrumentation Engineer shall be

responsible For patching co ,De used and for providing
wiring/list measuring programs with necessary calibration
and set-up.

4.. This procedure conforms to Rockwell specification RLO1033
steps .3.3.2.1 thru .3.3.2.4.¢.

GENERAL NOTES:

1. Heavy oxides may be removed with abrasive mats.

2. Hands shall be free of creams and lotions during strain
gage installation.

3. All abrading shall be kept to a minimum to assure
maximum duma house life.

4. The last three wipes shall be ,viped ;n one direction only.
Change pads after each wipe.

TECH INSPECTION

CONT. NASA

PAGE COMPLETE:

DATE QC
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PROCEDURE:

Before any work begins, remove any existing strain gages

on the test component.

Step 1.0

Adhesive Preparation
Mix M-Bond 610 by allowing both resin and curing to come

to ambient temperature. Pour contents of bottle labeled

'Curing Agent' into bottle labled 'Resin' using disposable

plastic funnel. Tighten brush cop and shake vigorously for
10 seconds minimum. Mark bottle with date in space provided

on label. Allow adhesive to atand for one hour minimum.

mixed adhesive has a pot life of six weeks maximum when

stored at room temperature. Adhesive containing particulate

matter shall not be used. Allow air bubbles to rise to the

surface and dissipate before using.

NOTES:

1. Since the mixing operations can take a few hours, it is
advisable to mix a spare bottle to help prevent unexpecte(

delays during strain gage installation.

2. Mixed M-Bond 510 should be allowed to come to ambient

temperature prior to use.

Time Step 1.0 started hours.

• Time Finished hours.

• Minimum one hour from Step 1.0.

Step 2.0

Surface Preparation

TECH

PAGE COMPLETE:

Step 2.1

Solvent Degreasing

Prepare the surface to be bonded by wiping with acetone

conforming to 0-A-051 or isopropyl alcohol conforming to
TT-I-735 to remove surface contamination. The solvent wipe

shall include the area approximately 4" to 6" on all sides

of the installation area in order to minimize the chance of

recontamination in subsequent operations. Air dry 15 minutes

at ambient conditions.

DATE QC
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•''*'*'* Caution ,**,**--

Do not expose solvent or vapors to open flame or heat
source. Use in well ventilated area.

Step 2.2

Surface Abrasion

The bonding area shall be abraded in a cross-hatched fashion

with 180 grit open-meshed non-clogging sanding fabric in

order to remove materials on the bonding area that would

prevent good bonding. Repeat Step 2.1

Step 2.3

Water Break-free Surface

(To be performed only at engineers request)

Spray bonding area with deionized water to verify a water

break-free surface (completely wetted surface) is obtained.

NOTE:

Heat treatment may be used if water break-free surface

cannot be obtained, heat area to cure temperature as

specified in Step 8.0 and hold for approximately 1/2 hour.

Cool and repeat Step 2.1 and Step 2..3 cycle as required
until water break-free surface is obtained.

Step 2.4-

Surface Conditioning

Repeatedly apply M-Prep Conditioner 'A' to the bonding

surface (and scrub with cotton-tipped applicators until a

cleon tip is no longer discolored by scrubbing. 0uring this

process, the surface shall be kept constantly wet with

Conditioner 'A' until the cleaning is completed. Cleaning
solutions should never be allowed to dry on the surface.

When clean the surface shall be dried by wiping the cleaned

area with a single slow stroke of a clean tissue or gauze.
The stroke shall begin inside the cleaned area to avoid

dragging contaminants in from the boundary of the area.

Then, with (a fresh clean tissue or gauze, a single stroke is

made in the opposite direction. The clean tissue or gauze

shall never be wiped back and forth, since this may redeposit
contaminants on the cteaned surface.

IECH INSPECllON

CONT. NASA

PAGE COMPLETE:

DATE QC
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TTB - OPERATION INSTRUCTIONS

Step 2.5

Neutralizing

Apply a liberal amount of M-Prep Neutrilizer 5 to saturate a

clean tissue. Apply to the gaging area and scrub with o

cotton-tipped applicator. Wipe the area dry with single, slow

passes of clean tissue or gauze. Use a fresh piece of tissue

or gauze for each additional pass required to dry the area.

The stroke shall begin inside the cleaned area to avoid

dragging contaminants in from the boundary area. Then with
a fresh clean tissue or gauze, a single stroke is made in the

opposite direction. The clean tissue or gauze shall never be

wiped back and forth, since this may redeposit contaminants

on the cleaned surface.

Step 2.6

Bonding
Bonding of strain gages and terminal strips shall take place
within 4-5 minutes maximum of cleaning as specified in Step

2.5 or the surface preparation steps of Step 2.0 thru 2.5

shall be repeated.

Step ,,3.0

Gage Preparation
Place strain gage/terminal (bond surface away from tope) on

high temperature mylar tape or polyimide tape. Strain gage
should have lead wires already soldered to tabs at this point.

Step 4.0

Terminal Bonding

(To be performed only at engineers request)

Prepare bonding surface by performing steps 1.00 thru 2.6

of this procedure.

NOTES:

1. Temporary I.D. togs may be used on gage lead wires.

2. Step 5.0 thru 7.0 shall be completed within four hours.

Step 5.0

Adhesive Application
Coat gage/terminal mounting surface and pump mounting

surface with a thin layer of M-Bond 610 adhesive. 0o not

allow the adhesive applicator to touch the tape mastic which

holds the pre-ossembled gage assembly in place. Let the

adhesive air dry 10 to 1.5 minutes.

IECH
INSPECllON

CONT. NASA

PAGE COMPLETE:

DATE QC
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Step 6.0

Gage Positioning

Place the gage/terminal assembly in its position. Use only

enough pressure to allow the assembly to be tacked down.

Hold in place with additional mylar or polyimide tape if

neccessory, but the tape contact with the adhesive should be
kept to o minimum.

Step 7.0

Application of Pressure

Cover the bonded strain gage assembly with a thin piece of

teflon sheet which may be anchored down with high

temperature myolr or polyimide tape. Use an approximately
3/32 thick silicone foam rubber pad (such as the silicone

gum pad provided by Micra Measurements) to cover an area

slightly larger than the gage/terminal areas. Sufficient

pressure (clamping) can be applied to ensure intimate

contact between the strain gage and the substrate during

cure by wrapping the assembly with unsupported, self-

adhering sil;cone rubber tape or by wrapping with heat shrink

mylar tape and shrinking with a heat gun, or with a
suitable clamping fixture.

NOTES:

1. Use of silicone pad and teflon sheet is optional.

2. Metal flex ducting may be used with heat gun to increase
performance.

"'*'**" Caution ,-,,,,,-

Never maintain the heat gun air flow directly onto the strain

gage. Protect heat-sensitive hardware in the vicinity of the

bonding area by shielding with aluminum foil or by removing
sensitive item.

Step 8.0

Curing of adhesive

The bonded assembly shall be cured at 265°F +/-15°F for

at least 2 1/2 hours. Slowly raise substrate temperature to
the cure temperature range for the specified time. Heat con

be applied to the assembly using heat guns as long as the

substrate temperature is monitored by the use of thermo-

couple and the heat flow is never maintained directly onto
the strain gage.

I'ECH
INSPECTION

CONT. NASA

PAGE COMPLETE:

DATE QC
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TTB - OPERATION INSTRUCTIONS

Step 8.1
Start Time

Enter time on buy-off sheets.

Step 8.2
End Time

Enter time on buy-off sheets.

Step 9.0

Removal of Tope
Substrata must be below 150°F before removing pressure

(clamp) from assembly. Slowly remove the gum pad and then

slowly remove the tape and the teflon sheet.

Step 10.0
Visual Inspection

Visually inspect strain gage bonds at lOX to ¢0X magnificatior

(if accessoble to magnification) and verify that an adhesive

is present all around the periphery of the gage. Verify that
there is adhesion at the gage edges and ensure that no air

bubbles, voids, contaminates, or particulates are present ;n

the adhesive under the gage. Verify gage and terminal

location to drawing requirements.

NOTE:

A borescope may be used for verification.

Step 11.0
Resistance Test

Using a volt/ohm meter, measure the resistance between

each leg of gage. Gage should read between ,3¢0 to ,360

ohms. Record on buy-off sheet.

CCN O/D

Step 12.0
Insulation Resistance Test

Using a Megohmmeter, measure insulation resistance between

gage and test component. Test voltage should not exceed
1000 volts +/-2.5 VDC and should read a minimum of 100(

megohms for 5 to 600 seconds. Record on buy-off sheet.

CCN O/0

TECH
INSPECTION

CONT. NASA

PAGE COMPLETE:

DATE QC
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Step 13.0

Application of Gage/Terminal Overcoat

Step 13.1

Cleaning

Wipe overcoating area with a cotton swab moistened with

isopropyl alcohol (TT-I-735) or 1,1,1-trichloroethan e

(0-T-620 or RB0210-021).

Step 13.2

Drying of Overcoat Area

Remove moi=ture from the =train gage prior to over-

coating by gently drying the strain gage with o heat gun.

Do not maintain air flow from heat gun directly on the gage.
Do not apply heat for more than 10 minutes.

Step 13.3

Overcoat Application M-Coat 'A'

Two coots of M-Coat 'A' shall be applied. The First coat

shall be a thin, brush applied layer over the bonded gage/
terrr_nol assemblies. Core shall be taken to insure M-Coot 'A'
is brushed under the lead wires. Overcoat shall extend

around the gage/terminal periphery. Allow two hours minimum

for (:zir drying of first overcoat. The second coat shall be

applied evenly by brush, Fully covering the area previously
coated. No visible voids shall be present. Bottles of M-Coat

'A' which contain gelatinous or particulate matter shall not
be used.

Step I¢.0

Upon completion of gage installation, put all gages back on

line, Splice to appropriate drag-on cables indicated by MSID
number or MID number.

PACE COMPLETE:

DATE QC
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